研究论文

小麦14-3-3蛋白TaGRF3-D基因克隆及功能分析

  • 孙月 ,
  • 郭树娟 ,
  • 赵惠贤 ,
  • 马猛 ,
  • 刘香利
展开
  • 西北农林科技大学生命科学学院, 杨凌 712100
*刘香利, 博士, 副教授, 硕士生导师。一直从事小麦产量和抗旱相关基因功能及遗传改良基础研究。主持完成国家自然科学基金(No.31101205)、杨凌示范区产学研用协同创新重大项目“高产、优质、耐旱小麦分子设计育种实用技术研究及应用”(No.2017CXY-01)、基本科研业务费专项资金项目2项以及校长基金项目1项。主持陕西省自然科学基础研究计划(No.2024JC-YBMS-171)。先后参加国家自然科学基金5项, 国家转基因生物新品种培育科技重大专项课题等4项。以第一作者/通讯作者发表论文20余篇。E-mail: liuxianglii@163.com

收稿日期: 2024-10-17

  录用日期: 2025-03-18

  网络出版日期: 2025-03-18

基金资助

陕西省自然科学基础研究计划(2024JC-YBMS-171);国家自然科学基金(32072003);国家自然科学基金(32372103)

Cloning and Functional Analysis of the 14-3-3 Protein-encoding Gene TaGRF3-D in Wheat (Triticum aestivum)

  • Yue Sun ,
  • Shujuan Guo ,
  • Huixian Zhao ,
  • Meng Ma ,
  • Xiangli Liu
Expand
  • College of Life Sciences, Northwest A&F University, Yangling 712100, China

Received date: 2024-10-17

  Accepted date: 2025-03-18

  Online published: 2025-03-18

摘要

14-3-3蛋白广泛参与植物生长发育、代谢和非生物逆境信号转导过程。该研究克隆了小麦(Triticum aestivum) 14-3-3蛋白TaGRF3-D基因, TaGRF3-D基因编码261个氨基酸残基, 在单子叶植物中高度保守, 其与乌拉尔图小麦(T. urartu)的TuGF14d和大麦(Hordeum vulgare)的HvGF14a氨基酸序列完全相同; TaGRF3-D启动子区含有脱落酸等激素响应元件和多个非生物胁迫响应元件。亚细胞定位结果显示, TaGRF3-D蛋白主要定位于细胞膜与细胞核。对过表达TaGRF3-D基因的拟南芥(Arabidopsis thaliana)转基因株系ABA敏感性及干旱胁迫耐受性分析发现, TaGRF3-D过表达拟南芥在PEG和ABA处理下根长显著大于野生型, 干旱胁迫后存活率显著高于野生型。进一步利用酵母双杂交(yeast two-hybrid, Y2H)实验对TaGRF3-D蛋白与小麦AREBs/ABFs (ABA-responsive element binding proteins/ABA-responsive element binding factors)蛋白进行互作分析, 结果表明TaGRF3-D蛋白与TaABF3-B、TaABF4-A、TaABF15-D、TaABF16-B、TaABF17-D和 TaABF18-B存在相互作用; 而与TaABF1-D、TaABF2-A和TabABF19-A不互作。综上表明, TaABF3-D可能通过与TaABFs蛋白互作响应ABA信号, 从而提高转基因植株对干旱胁迫的耐受性。研究结果为小麦TaGRF3-D基因逆境胁迫响应功能研究奠定了基础。

本文引用格式

孙月 , 郭树娟 , 赵惠贤 , 马猛 , 刘香利 . 小麦14-3-3蛋白TaGRF3-D基因克隆及功能分析[J]. 植物学报, 2025 , 60(6) : 863 -874 . DOI: 10.11983/CBB24156

Abstract

INTRODUCTION: 14-3-3 proteins are a highly conserved protein family that specifically recognize phosphorylated target proteins and play crucial roles in plant abiotic stress responses. By interacting with AREB/ABF (ABA-responsive element binding protein/ABA-responsive element binding factor) transcription factors, 14-3-3 proteins participate in ABA signal transduction and regulate abiotic stress tolerance. TaGRF3-D is a 14-3-3 protein gene in wheat (Triticum aestivum), and our previous studies revealed that the expression of this gene was upregulated under ABA and abiotic stress.
RATIONALE: To explore the biological function of the TaGRF3-D gene, we cloned the gene, and investigated its subcellular localization and function under drought stress.
RESULTS: The results revealed that TaGRF3-D is highly conserved in monocotyledonous plants and is localizes in the nucleus and plasma membrane. Compared with the wild type, the Arabidopsis thaliana transgenic lines overexpressing TaGRF3-D presented significantly longer roots under PEG and ABA treatments and showed a markedly greater survival rate after drought stress. Yeast two-hybrid analysis revealed that TaGRF3-D interacted with wheat TaABF3-B, TaABF4-A, TaABF15-D, TaABF16-B, TaABF17-D, and TaABF18-B, but not with TaABF1-D, TaABF2-A or TaABF19-A.
CONCLUSION: These results suggest that TaABF3-D responds to ABA signaling by interacting with wheat TaABF transcription factors, thereby increasing the drought stress tolerance of transgenic plants.

Phenotypes of the TaGRF3-D transgenic lines and the wild type (WT) under drought stress (A) and interaction between the TaGRF3-D protein and the ABF protein (B). Bars=1 cm

参考文献

[1] Aitken A (2006). 14-3-3 proteins: a historic overview. Semin Cancer Biol 16, 162-172.
[2] Campo S, Peris-Peris C, Montesinos L, Pe?as G, Messeguer J, San Segundo B (2012). Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection. J Exp Bot 63, 983-999.
[3] Choi HI, Hong JH, Ha JO, Kang JY, Kim SY (2000). ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275, 1723-1730.
[4] Fu HA, Subramanian RR, Masters SC (2000). 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40, 617-647.
[5] Gietz RD, Woods RA (2002). Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350, 87-96.
[6] Guo SJ, Sun Y, Zheng HY, Zhao HX, Ma M, Liu XL (2023). Genome-wide identification and expression analysis of ABF/AREB/ABI5 gene family in wheat (Triticum aestivum). J Agric Biotechnol 31, 667-681. (in Chinese)
  郭树娟, 孙月, 郑昊元, 赵惠贤, 马猛, 刘香利 (2023). 小麦ABF/AREB/ABI5基因家族全基因组鉴定与表达分析. 农业生物技术学报 31, 667-681.
[7] He Y, Zhang Y, Chen LH, Wu CL, Luo QC, Zhang F, Wei QH, Li KX, Chang JL, Yang GX, He GY (2017). A member of the 14-3-3 gene family in Brachypodium distachyon, BdGF14d, confers salt tolerance in transgenic tobacco plants. Front Plant Sci 8, 340.
[8] Ho SL, Huang LF, Lu CA, He SL, Wang CC, Yu SP, Chen J, Yu SM (2013). Sugar starvation- and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. Plant Mol Biol 81, 347-361.
[9] Huang Y, Wang WS, Yu H, Peng JH, Hu ZR, Chen L (2022). The role of 14-3-3 proteins in plant growth and response to abiotic stress. Plant Cell Rep 41, 833-852.
[10] Jiang W, Tong T, Li W, Huang ZH, Chen G, Zeng FR, Riaz A, Amoanimaa-Dede H, Pan R, Zhang WY, Deng FL, Chen ZH (2023). Molecular evolution of plant 14-3-3 proteins and function of Hv14-3-3A in stomatal regulation and drought tolerance. Plant Cell Physiol 63, 1857-1872.
[11] Johnson RR, Shin M, Shen JQ (2008). The wheat PKABA1-interacting factor TaABF1 mediates both abscisic acid- suppressed and abscisic acid-induced gene expression in bombarded aleurone cells. Plant Mol Biol 68, 93-103.
[12] Kaundal A, Ramu VS, Oh S, Lee S, Pant B, Lee HK, Rojas CM, Senthil-Kumar M, Mysore KS (2017). GENERAL CONTROL NONREPRESSIBLE4 degrades 14-3-3 and the RIN4 complex to regulate stomatal aperture with implications on nonhost disease resistance and drought tolerance. Plant Cell 29, 2233-2248.
[13] Kobayashi F, Maeta E, Terashima A, Takumi S (2008). Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Physiol Plant 134, 74-86.
[14] Latz A, Becker D, Hekman M, Müller T, Beyhl D, Marten I, Eing C, Fischer A, Dunkel M, Bertl A, Rapp UR, Hedrich R (2007). TPK1, a Ca2+-regulated Arabidopsis vacuole two-pore K+ channel is activated by 14-3-3 proteins. Plant J 52, 449-459.
[15] Latz A, Mehlmer N, Zapf S, Mueller TD, Wurzinger B, Pfister B, Csaszar E, Hedrich R, Teige M, Becker D (2013). Salt stress triggers phosphorylation of the Arabidopsis vacuolar K+ channel TPK1 by calcium-dependent protein kinases (CDPKs). Mol Plant 6, 1274-1289.
[16] Li FF, Mei FM, Zhang YF, Li SM, Kang ZS, Mao HD (2020). Genome-wide analysis of the AREB/ABF gene lineage in land plants and functional analysis of TaABF3 in Arabidopsis. BMC Plant Biol 20, 558.
[17] Lu G, DeLisle AJ, de Vetten NC, Ferl RJ (1992). Brain proteins in plants: an Arabidopsis homolog to neurotransmitter pathway activators is part of a DNA binding complex. Proc Natl Acad Sci USA 89, 11490-11494.
[18] Ma YM, Wu ZY, Dong JF, Zhang SH, Zhao JL, Yang TF, Yang W, Zhou L, Wang J, Chen JS, Liu Q, Liu B (2023). The 14-3-3 protein OsGF14f interacts with OsbZIP23 and enhances its activity to confer osmotic stress tolerance in rice. Plant Cell 35, 4173-4189.
[19] Ren YR, Yang YY, Zhang R, You CX, Zhao Q, Hao YJ (2019). MdGRF11, an apple 14-3-3 protein, acts as a positive regulator of drought and salt tolerance. Plant Sci 288, 110219.
[20] Schoonheim PJ, Costa Pereira DD, De Boer AH (2009). Dual role for 14-3-3 proteins and ABF transcription factors in gibberellic acid and abscisic acid signaling in barley (Hordeum vulgare) aleurone cells. Plant Cell Environ 32, 439-447.
[21] Shao WN, Chen W, Zhu XG, Zhou XY, Jin YY, Zhan C, Liu GS, Liu X, Ma DF, Qiao YL (2021). Genome-wide identification and characterization of wheat 14-3-3 genes unravels the role of TaGRF6-A in salt stress tolerance by binding MYB transcription factor. Int J Mol Sci 22, 1904.
[22] Shen YX (2018). Identification and Expression Analysis of the 14-3-3 Gene Family in Triticum aestivum (L.). Master’s thesis. Yangling: Northwest A&F University. pp. 30-36. (in Chinese)
  申玉霞 (2018). 小麦14-3-3蛋白基因家族鉴定和表达分析. 硕士论文. 杨凌: 西北农林科技大学. pp. 30-36.
[23] Sun XL, Sun MZ, Jia BW, Chen C, Qin ZW, Yang KJ, Shen Y, Meiping Z, Mingyang C, Zhu YM (2015). A 14-3-3 family protein from wild soybean (Glycine soja) regulates ABA sensitivity in Arabidopsis. PLoS One 10, e0146163.
[24] Yang L, You J, Wang YP, Li JZ, Quan WL, Yin MZ, Wang QF, Chan ZL (2017). Systematic analysis of the G-box factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon. Plant Physiol Biochem 117, 1-11.
[25] Zhang XR, Henriques R, Lin SS, Niu QW, Chua NH (2006). Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1, 641-646.
[26] Zhang Y, He Y, Zhao HY, Wang Y, Wu CL, Zhao YZ, Xue HN, Zhu QD, Zhang JL, Ou XQ (2024). The 14-3-3 protein BdGF14a increases the transcriptional regulation activity of BdbZIP62 to confer drought and salt resistance in tobacco. Plants 13, 245.
[27] Zhang Y, He Y, Zhao HY, Zhang Y, Yang J, Ou XQ, Zhang JL, Zhu QD (2023). A 14-3-3 protein-encoding gene, BdGF14g, confers better drought tolerance by regulating ABA biosynthesis and signaling. Plants 12, 3975.
[28] Zhang Y, Zhao HY, Zhou SY, He Y, Luo QC, Zhang F, Qiu D, Feng JL, Wei QH, Chen LH, Chen MJ, Chang JL, Yang GX, He GY (2018). Expression of TaGF14b, a 14-3- 3 adaptor protein gene from wheat, enhances drought and salt tolerance in transgenic tobacco. Planta 248, 117-137.
[29] Zhao X, Li F, Li K (2021). The 14-3-3 proteins: regulators of plant metabolism and stress responses. Plant Biol 23, 531-539.
[30] Zhou Y, Li BY, Li XB (2012). Roles of 14-3-3 proteins in regulating plant development. Chin Bull Bot 47, 55-64. (in Chinese)
  周颖, 李冰樱, 李学宝 (2012). 14-3-3蛋白对植物发育的调控作用. 植物学报 47, 55-64.
文章导航

/