为构建大花三色堇(Viola × wittrochiana)植株再生体系, 以大花三色堇(Viola × wittrochiana) 8个品种的叶片和叶柄为实验材料, 筛选并确定了再生率高的品种和部位, 并以PXP的叶柄为外植体, 进行再生体系的优化。结果表明, PXP是用于再生体系建立的最佳品种, 其叶柄是最佳外植体, 诱导愈伤组织的最佳培养基为1/2MS (不含糖)+30 g∙L–1 蔗糖+1.5 mg∙L–1 2,4-D+1.5 mg∙L–1 KT, 不定芽诱导的最优培养基为1/2MS (不含糖)+30 g∙L–1 海藻糖+0.05 mg∙L–1 2,4-D+3 mg∙L–1 6-BA, 再生苗经多次诱导分化, 再生率可达67.33%±3.06%。不定芽增殖的最优培养基为MS (不含糖)+30 g∙L–1 海藻糖+0.5 mg∙L–1 2,4-D+1 mg∙L–1 6-BA, 增殖系数为3.29±0.22。再生苗在生根培养基1/2MS (不含糖)+30 g∙L–1 海藻糖+0.1 mg∙L–1 NAA上培养2周后开始生根, 生根率为84.44%±6.93%。该研究建立了分化率较高的大花三色堇再生体系, 解决了大花三色堇不定芽分化困难的难题, 为其育种改良和优良品种快繁提供了技术支持。
[an error occurred while processing this directive]
陈玥如 (2013). 冷响应基因CBF1对矮牵牛和三色堇的遗传转化研究. 硕士论文.兰州: 兰州大学. pp. 1-37.
丁世萍 严, 季道藩 (1998). 糖类在植物组织培养中的效应. 植物学通报, 43-47.
傅金民 一种提高多年生黑麦草愈伤组织再生率的方法. 中国专利, CN103314860B. 2014-08-13.
李雪青, 盛玉辉, 付瑛格, 周扬, 赵莹, 凌鹏, 宋希强, 王健 (2020). 文心兰高效再生体系的建立. 南方农业学报 51, 1169-1175.
牛燕燕, 王梅, 李文静, 李冰, 范明杰, 成永慧, 王超凡 (2023). 三色堇栽培技术规程. 园艺与种苗 43, 45-46.
吴琼, 秦晶晶, 陈纹, 苏雪 (2016). 药用植物紫花地丁组织培养与快速繁殖技术研究. 中兽医医药杂志 35, 5-8.
杨佳丽, 饶羽菲, 张润花, 周国林, 林处发, 何燕红, 宁国贵 (2024). 捕虫堇叶片高效再生体系建立. 植物学报 59, 626-634.
张梦玲 (2021). 枣悬浮细胞系的建立及其在cAMP合成调控中的应用. pp. 1-35.
张其生 (2009). 三色堇与角堇花色、花斑遗传规律及组织培养的研究. 硕士论文. 武汉: 华中农业大学. pp. 1-63.
张其生, 包满珠, 卢兴霞, 胡惠蓉 (2010). 大花三色堇育种研究进展. 植物学报 45, 128.
Ameri A, Davarynejad GH, Moshtaghi N, Tehranifar A (2020). The Role of Carbohydrates on The Induction of Somatic Embryogenesis and The Biochemical State of The Embryogenic Callus in Pyrus communis L. Cv. ‘Dar Gazi’. Appl Fruit Sci 62(4), 411-419.
Babber S, Kulbhushan S (1991). Study of anatomy of vitrified structure in Viola tricolor. Ann Biol (Hisar, India) 7, 93-95.
Bhardwaj R, Kumar M, Kaushal N, Kamboj AD, Krishnamoorthi A, Singh A, Motla R, Anushi (2024). From Lab to Bouquet: The Biotechnological Frontier in Modern Floriculture for Sustainable and Resilient Flower Farming. J Adv Biol Biotechnol 27(2), 119-137.
Encina CL, Parisi A, O’Brien C, Mitter N (2014). Enhancing somatic embryogenesis in avocado (Persea americana Mill.) using a two-step culture system and including glutamine in the culture medium. Sci Hortic 165, 44-50.
Fernandes L, Ramalhosa E, Baptista P, Pereira JA, Saraiva JA, Casal SIP (2019). Nutritional and Nutraceutical Composition of Pansies (Viola ×wittrockiana) During Flowering. J Food Sci 84(3), 490-498.
Gandolfo E, Hakim G, Geraci J, Feuring V, Giardina E, Benedetto A (2016). Responses of Pansy (Viola wittrockiana Gams.) to the Quality of the Growing Media. Am J Exp Agric 12(3), 1-10.
Gon?alves J, Borges JCF, Carlos LDA, Silva APCM, Souza FAD (2019). Bioactive compounds in edible flowers of garden pansy in response to irrigation and mycorrhizal inoculation. Rev Ceres 66, 407-415.
Gonzalez-Barrio R, Periago MJ, Luna-Recio C, Garcia-Alonso FJ, Navarro-Gonzalez I (2018). Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chem 252, 373-380.
Jha SR, Naz R, Asif A, Okla MK, Soufan W, Al-Ghamdi AA, Ahmad A (2020). Development of an In Vitro Propagation Protocol and a Sequence Characterized Amplified Region (SCAR) Marker of Viola serpens Wall. ex Ging. Plants (Basel) 9(2), 246.
Jheng FY, Do YY, Liauh YW, Chung JP, Huang PL (2006). Enhancement of growth and regeneration efficiency from embryogenic callus cultures of Oncidium ‘Gower Ramsey’by adjusting carbohydrate sources. Plant Sci 170(6), 1133-1140.
Khajuria AK, Hano C, Bisht NS (2021). Somatic Embryogenesis and Plant Regeneration in Viola canescens Wall. Ex. Roxb.: An Endangered Himalayan Herb. Plants 10(4), 761.
Li Q, Wang J, Sun HY, Shang X (2014). Flower color patterning in pansy (Viola×wittrockiana Gams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas. Plant Physiol Biochem 84, 134-141.
Long Y, Yang Y, Pan G, Shen Y (2022). New Insights Into Tissue Culture Plant-Regeneration Mechanisms. Front Plant Sci 13, 926752.
Mercuri A, Sacchetti A, De Benedetti L, Schiva T, Alberti S (2002). Green fluorescent flowers. Plant Sci 162(4), 647-654.
Nanjaraj Urs AN, Hu Y, Li P, Yuchi Z, Chen Y, Zhang Y (2018). Cloning and Expression of a Nonribosomal Peptide Synthetase to Generate Blue Rose. ACS Synth Biol 8(8), 1698-1704.
Nunez S, Lopez V, Moliner C, Valero MS, Gomez-Rincon C (2023). Lipid lowering and anti-ageing effects of edible flowers of Viola ×wittrockiana Gams in a Caenorhabditis elegans obese model. Food Funct 14(19), 8854-8864.
Satyavathi VV, Jauhar PP, Elias EM, Rao MB (2004). Effects of Growth Regulators on In Vitro Plant Regeneration in Durum Wheat. Crop Sci 44(5), 1839.
Tang J, Wang CK, Pan X, Yan H, Zeng G, Xu W, He W, Daly NL, Craik DJ, Tan N (2010). Isolation and characterization of cytotoxic cyclotides from Viola tricolor. Peptides 31(8), 1434-1440.
Vukics V, Kery A, Guttman A (2008). Analysis of polar antioxidants in heartsease (Viola tricolor L.) and garden pansy (Viola ×wittrockiana Gams.). J Chromatogr Sci 46(9), 823-827.
Wang J, Bao MZ (2007). Plant regeneration of pansy (Viola wittrockiana) ‘Caidie’ via petiole-derived callus. Sci Hortic 111(3), 266-270.
Wijowska M, Kuta E, Przywara L (1999). In vitro culture of unfertilized ovules of Viola odorata L. Acta Biol Cracov Ser Bot 41(1), 95-101.
Xu J, Naing AH, Bunch H, Jeong J, Kim H, Kim CK (2021). Enhancement of the flower longevity of petunia by CRISPR/Cas9-mediated targeted editing of ethylene biosynthesis genes. Postharvest Biol Technol 174, 111460.
Yang W, Peng T, Li T, Cen J, Wang J (2018). Tyramine and tyrosine decarboxylase gene contributes to the formation of cyanic blotches in the petals of pansy (Viola×wittrockiana). Plant Physiol Biochem 127, 269.