植物学报 ›› 2021, Vol. 56 ›› Issue (4): 500-508.DOI: 10.11983/CBB21002
• 专题论坛 • 上一篇
收稿日期:
2021-01-06
接受日期:
2021-05-07
出版日期:
2021-07-01
发布日期:
2021-06-30
通讯作者:
王若涵
作者简介:
*E-mail: wangrh@bjfu.edu.cn基金资助:
Zhongsi Wang, Yaping Jia, Jin Zhang, Ruohan Wang*()
Received:
2021-01-06
Accepted:
2021-05-07
Online:
2021-07-01
Published:
2021-06-30
Contact:
Ruohan Wang
摘要: 多光谱成像(MSI)技术是一种新兴的成像检测技术, 通过将光谱与成像合二为一, 可实现植物结构、生理、生化表型的定性定量分析及其特征分布的评估。近年来, 与数学建模分析结合的MSI技术具有强大的信息捕获能力, 在植物学研究中展现出强劲的应用潜力。该文介绍了MSI技术的成像原理, 总结了近年来MSI技术在植物损伤鉴定、病害研究、代谢物质生化特征及生理进程鉴定方面的应用, 展望了该技术在植物研究领域的前沿性发展, 以期使MSI技术在植物研究中得到更好的应用。
王众司, 贾亚萍, 张瑾, 王若涵. 多光谱成像技术在植物学研究中的应用. 植物学报, 2021, 56(4): 500-508.
Zhongsi Wang, Yaping Jia, Jin Zhang, Ruohan Wang. Multispectral Imaging and Its Applications in Plant Science Research. Chinese Bulletin of Botany, 2021, 56(4): 500-508.
图1 多光谱成像技术应用方向变化趋势 UAS: 无人驾驶航空系统。节点表示多光谱技术的应用方向, 流量数据使用R语言统计, 分流表示应用方向的变化。
Figure 1 Trends in the application of multispectral imaging technology UAS: Unmanned aerial systems. The node indicates the application direction of the multispectral imaging, the value data uses R statistics, and the links indicate the change of the application direction.
图2 多光谱成像原理图 (A) 点扫描; (B) 线扫描; (C) 波长扫描; (D) 提取光谱维度中的R、G、B颜色通道可以得到彩色实物图; (E) 不同扫描方式得到的数据最终是包含空间信息与光谱信息的立方体; (F) 依据不同波长对采集的三维数据立方体进行不同光谱特征下的图像提取, 可得到特定离散波长下的样本数据信息。
Figure 2 Schematic diagram of multispectral imaging (A) Point scanning; (B) Line scanning; (C) Wavelength scanning; (D) Color images can be obtained by extracting the R, G and B color channels in the spectral dimension; (E) The data obtained by different scanning methods are ultimately cubes containing spatial information and spectral information; (F) According to different wavelengths, the collected three-dimensional data cubes are extracted with different spectral features, and the sample data information under specific discrete wavelengths can be obtained.
应用 | 波长范围(nm) | 关键波长(nm) | 应用模型 | 精度 | 成像优势 | 参考文献 |
---|---|---|---|---|---|---|
植物表型鉴定 | 446, 452, 473, 505, 524, 534, 568, 594, 673, 704, 715, 734, 949 | - | PLSR (偏最小二乘回归); PLS-DA (偏最小二乘判别分析); SPA (连续投影算法); RF (随机森林) | 0.79 | 玉米表型高通量鉴定的新方法 | |
植物病害检测 | 365-960 350-2500 | 520, 540, 580, 610, 630, 650, 770 | SVM (支持向量机); OLS (普通最小二乘法) | 平均高于0.85 | 可检测未产生肉眼可见变化时的病害 | |
果实品质鉴定 | 325-1100 550-950 | 640, 670, 760 | LDA (线性判别式分析); K- NN (K-近邻); FCMA (模糊C-均值聚类算法) | 平均高于0.97 | 柑橘类水果高通量品质鉴定的新方法 | |
微生物侵染检测 | 400-1000 375-1600 475, 560, 668, 840, 717 382-1032 400-1100 | 396, 578, 741, 420, 631, 990; 494, 578, 639, 678; 840; 475.56, 548.91, 652.14, 516.31, 720.05, 915.64 | ANOVA (方差分析); Kruskal-Wallis检验; LDA; QDA (二次判别分析); PLS (偏最小二乘法); LR (线性回归); SVM; PCA (主成分分析) | 平均高于0.93 | 可检测未产生肉眼可见变化时的侵染 | |
植物损伤鉴定 | 375-970 650-830 | - | SVM; RF; CNN (卷积神经网络) | 平均高于0.89 | 可检测未产生肉眼可见变化时的损伤 | |
生理状态检测 | 405, 560, 660, 860 400-1100 375, 405, 435, 450, 470, 505, 525, 570, 590, 630, 645, 660, 700, 780, 850, 870, 890, 910, 940, 970 400-1000 380-2200 | 510, 550 700, 800, 900, 1000 | LR (线性回归); RC (相关 曲线); PLS (偏最小二乘法); MLR (多元线性回归); LDA; PCA (主成分分析); OTSU (最大类间方差); BPANN (反向传播人工神经网络); SVMR (支持向量机回归) | 平均高于0.96 | 可实现植物无机元素、代谢物的 无损检测 | |
种子鉴定 | 405, 470, 530, 590, 660, 850 1000-2500 | - | MLR (多元线性回归); PLS-DA | 平均高于0.97 | 可实现种子生活力或化学处理的非侵入式检测 |
表1 多光谱成像技术在植物学研究中的应用
Table 1 Application of multispectral imaging in plant research
应用 | 波长范围(nm) | 关键波长(nm) | 应用模型 | 精度 | 成像优势 | 参考文献 |
---|---|---|---|---|---|---|
植物表型鉴定 | 446, 452, 473, 505, 524, 534, 568, 594, 673, 704, 715, 734, 949 | - | PLSR (偏最小二乘回归); PLS-DA (偏最小二乘判别分析); SPA (连续投影算法); RF (随机森林) | 0.79 | 玉米表型高通量鉴定的新方法 | |
植物病害检测 | 365-960 350-2500 | 520, 540, 580, 610, 630, 650, 770 | SVM (支持向量机); OLS (普通最小二乘法) | 平均高于0.85 | 可检测未产生肉眼可见变化时的病害 | |
果实品质鉴定 | 325-1100 550-950 | 640, 670, 760 | LDA (线性判别式分析); K- NN (K-近邻); FCMA (模糊C-均值聚类算法) | 平均高于0.97 | 柑橘类水果高通量品质鉴定的新方法 | |
微生物侵染检测 | 400-1000 375-1600 475, 560, 668, 840, 717 382-1032 400-1100 | 396, 578, 741, 420, 631, 990; 494, 578, 639, 678; 840; 475.56, 548.91, 652.14, 516.31, 720.05, 915.64 | ANOVA (方差分析); Kruskal-Wallis检验; LDA; QDA (二次判别分析); PLS (偏最小二乘法); LR (线性回归); SVM; PCA (主成分分析) | 平均高于0.93 | 可检测未产生肉眼可见变化时的侵染 | |
植物损伤鉴定 | 375-970 650-830 | - | SVM; RF; CNN (卷积神经网络) | 平均高于0.89 | 可检测未产生肉眼可见变化时的损伤 | |
生理状态检测 | 405, 560, 660, 860 400-1100 375, 405, 435, 450, 470, 505, 525, 570, 590, 630, 645, 660, 700, 780, 850, 870, 890, 910, 940, 970 400-1000 380-2200 | 510, 550 700, 800, 900, 1000 | LR (线性回归); RC (相关 曲线); PLS (偏最小二乘法); MLR (多元线性回归); LDA; PCA (主成分分析); OTSU (最大类间方差); BPANN (反向传播人工神经网络); SVMR (支持向量机回归) | 平均高于0.96 | 可实现植物无机元素、代谢物的 无损检测 | |
种子鉴定 | 405, 470, 530, 590, 660, 850 1000-2500 | - | MLR (多元线性回归); PLS-DA | 平均高于0.97 | 可实现种子生活力或化学处理的非侵入式检测 |
[1] |
胡伟娟, 傅向东, 陈凡, 杨维才 (2019). 新一代植物表型组学的发展之路. 植物学报 54, 558-568.
DOI |
[2] | 彭羽, 陶子叶, 许子妍, 白岚 (2020). 应用高光谱数据估算植物物种beta多样性. 光谱学与光谱分析 40, 2016-2022. |
[3] | 王一杰, 杨智慧, 成军虎 (2020). 多光谱成像技术在食品营养品质检测方面的应用进展. 食品工业科技 41, 339-347. |
[4] |
Albetis J, Jacquin A, Goulard M, Poilvé H, Rousseau J, Clenet H, Dedieu G, Duthoit S (2019). On the potentiality of UAV multispectral imagery to detect Flavescence dorée and grapevine trunk diseases. Remote Sens 11, 23.
DOI URL |
[5] |
Baek I, Kim MS, Cho BK, Mo C, Barnaby JY, McClung AM, Oh M (2019a). Selection of optimal hyperspectral wavebands for detection of discolored, diseased rice seeds. Appl Sci 9, 1027.
DOI URL |
[6] |
Baek I, Kusumaningrum D, Kandpal LM, Lohumi S, Mo C, Kim MS, Cho BK (2019b). Rapid measurement of soybean seed viability using kernel-based multispectral image analysis. Sensors 19, 271.
DOI URL |
[7] |
Blasco J, Aleixos N, Moltó E (2007). Computer vision detection of peel defects in citrus by means of a region oriented segmentation algorithm. J Food Eng 81, 535-543.
DOI URL |
[8] | Bodner G, Alsalem M, Nakhforoosh A (2021). Root system phenotying of soil-grown plants via RGB and hyperspectral imaging. In: Tripodi P, ed. Crop Breeding. Methods in Molecular Biology Vol. 2264. New York: Humana. PP. 245-268. |
[9] |
Cen HY, Wan L, Zhu JP, Li YJ, Li XR, Zhu YM, Weng HY, Wu WK, Yin WX, Xu C, Bao YD, Feng L, Shou JY, He Y (2019). Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual image-frame snapshot cameras. Plant Methods 15, 32.
DOI URL |
[10] |
Coupel-Ledru A, Pallas B, Delalande M, Boudon F, Carrié E, Martinez S, Regnard JL, Costes E (2019). Multi-scale high-throughput phenotyping of apple architectural and functional traits in orchard reveals genotypic variability under contrasted watering regimes. Hortic Res 6, 52.
DOI URL |
[11] |
Ebrahiema A, Olaniyi AF, Lembe SM, Umezuruike LO (2018). Non-destructive prediction of internal and external quality attributes of fruit with thick rind: a review. J Food Eng 217, 11-23.
DOI URL |
[12] |
ElMasry G, Mandour N, Al-Rejaie S, Belin E, Rousseau D (2019a). Recent applications of multispectral imaging in seed phenotyping and quality monitoring—an overview. Sensors 19, 1090.
DOI URL |
[13] |
ElMasry G, Mandour N, Wagner MH, Demilly D, Verdier J, Belin E, Rousseau D (2019b). Utilization of computer vision and multispectral imaging techniques for classification of cowpea (Vigna unguiculata) seeds. Plant Methods 15, 24.
DOI PMID |
[14] | ElMasry G, Mohammed K, Sun DW, Allen P (2012). Principles and applications of hyperspectral imaging in quality evaluation of Agro-food products: a review. Crit Rev Food Sci Nutr 11, 999-1023. |
[15] | Fahrentrapp J, Ria F, Geilhausen M, Panassiti B (2019). Detection of gray mold leaf infections prior to visual symptom appearance using a five-band multispectral sensor. Front Recent Dev Plant Sci 10, 628. |
[16] |
Feng XP, Yu CL, Chen Y, Peng JY, Ye LH, Shen TT, Wen HY, He Y (2018). Non-destructive determination of shikimic acid concentration in transgenic maize exhibiting glyphosate tolerance using chlorophyll fluorescence and hyperspectral imaging. Front Plant Sci 9, 468.
DOI URL |
[17] |
Fernandez R, Das P, Mirabet V, Moscardi E, Traas J, Verdeil JL, Malandain G, Godin C (2010). Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat Methods 7, 547-553.
DOI PMID |
[18] |
Hu XW, Yang LJ, Zhang ZX (2020). Non-destructive identification of single hard seed via multispectral imaging analysis in six legume species. Plant Methods 16, 116.
DOI URL |
[19] |
Khodabakhshian R, Emadi B, Khojastehpour M, Golzarian MR, Sazgarnia A (2017). Development of a multispectral imaging system for online quality assessment of pomegranate fruit. Int J Food Prop 20, 107-118.
DOI URL |
[20] | Kim JJ, Fan RL, Allison LK, Andrew TL (2020). On-site identification of ozone damage in fruiting plants using vapor-deposited conducting polymer tattoos. Sci Adv 6, eabc3296. |
[21] |
Lara MÁ, Diezma B, Lleó L, Roger JM, Garrido Y, Gil MI, Ruiz-Altisent M (2016). Hyperspectral imaging to evaluate the effect of irrigationwater salinity in lettuce. Appl Sci 6, 412.
DOI URL |
[22] |
Li JB, Tian X, Huang WQ, Zhang BH, Fan SX (2016). Application of long-wave near infrared hyperspectral imaging for measurement of soluble solid content (SSC) in pear. Food Anal Method 9, 3087-3098.
DOI URL |
[23] |
Li LP, Lee SH, Hsu HY, Park JS (2017). Nonlinear fusion of multispectral citrus fruit image data with information contents. Sensors 17, 142.
DOI URL |
[24] |
Liu C, Liu W, Lu X, Chen W, Chen F, Yang J, Zheng L (2016a). Non-destructive discrimination of conventional and glyphosate-resistant soybean seeds and their hybrid descendants using multispectral imaging and chemometric methods. J Agric Sci 154, 1-12.
DOI URL |
[25] |
Liu CH, Liu W, Chen W, Yang JB, Zheng L (2015). Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit. Food Chem 173, 482-488.
DOI URL |
[26] |
Liu CH, Liu W, Lu XZ, Chen W, Yang JB, Zheng L (2014). Nondestructive determination of transgenic Bacillus thuringiensis rice seeds(Oryza sativa L.) using multispectral imaging and chemometric methods. Food Chem 153, 87-93.
DOI URL |
[27] |
Liu CH, Liu W, Lu XZ, Chen W, Yang JB, Zheng L (2016b). Potential of multispectral imaging for real-time determination of colour change and moisture distribution in carrot slices during hot air dehydration. Food Chem 195, 110-116.
DOI URL |
[28] |
Liu JX, Cao Y, Wang Q, Pan WJ, Ma F, Liu CH, Chen W, Yang JB, Zheng L (2016c). Rapid and non-destructive identification of water-injected beef samples using multispectral imaging analysis. Food Chem 190, 938-943.
DOI URL |
[29] |
Liu LY, Dong YY, Huang WJ, Du XP, Ren BY, Huang LS, Zheng Q, Ma HQ (2020a). A disease index for efficiently detecting wheat fusarium head blight using Sentinel-2 multispectral imagery. IEEE Access 8, 52181-52191.
DOI URL |
[30] |
Liu LY, Wang ZS, Li J, Zhang X, Wang RH (2020b). A non-invasive analysis of seed vigor by infrared thermography. Plants 9, 768.
DOI URL |
[31] |
Lleó L, Barreiro P, Ruiz-Altisent M, Herrero A (2009). Multispectral images of peach related to firmness and maturity at harvest. J Food Eng 93, 229-235.
DOI URL |
[32] |
Lu YZ, Lu RF (2018). Detection of surface and subsurface defects of apples using structured-illumination reflectance imaging with machine learning algorithms. Trans ASABE 61, 1831-1842.
DOI URL |
[33] |
Magwaza LS, Opara UL, Nieuwoudt H, Cronje PJR, Saeys W, Nicolaï B (2012). NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review. Food Bioprocess Technol 5, 425-444.
DOI URL |
[34] |
Mansfield SD, Kim H, Lu FC, Ralph J (2012). Whole plant cell wall characterization using solution-state 2D NMR. Nat Protoc 7, 1579-1589.
DOI PMID |
[35] |
McDonald LS, Salisbury PA, Ford R, Panozzo JF (2019). Quantifying the colour loss of green field pea (Pisum sativum L.) due to bleaching. PLoS One 14, e0221523.
DOI URL |
[36] |
Nagasubramanian K, Jones S, Sarkar S, Singh AK, Singh A, Ganapathysubramanian B (2018). Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems. Plant Methods 14, 86.
DOI PMID |
[37] |
Noordam JC, van den Broek WHAM, Buydens LMC (2005). Detection and classification of latent defects and diseases on raw French fries with multispectral imaging. J Sci Food Agric 85, 2249-2259.
DOI URL |
[38] |
Obenland D, Margosan D, Smilanick JL, Mackey B (2010). Ultraviolet fluorescence to identify navel oranges with poor peel quality and decay. Horttechnology 20, 991-995.
DOI URL |
[39] |
Oldeland J, Wesuls D, Rocchini D, Schmidt M, Jürgens N (2010). Does using species abundance data improve estimates of species diversity from remotely sensed spectral heterogeneity? Ecol Indic 10, 390-396.
DOI URL |
[40] |
Pan WJ, Wang X, Deng YR, Li JH, Chen W, Chiang JY, Yang JB, Zheng L (2015). Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging. Sci Rep 5, 11108.
DOI URL |
[41] |
Panagou EZ, Papadopoulou O, Carstensen JM, Nychas GJE (2014). Potential of multispectral imaging technology for rapid and non-destructive determination of the microbiological quality of beef filets during aerobic storage. Int J Food Microbiol 174, 1-11.
DOI URL |
[42] |
Poley LG, McDermid GJ (2020). A systematic review of the factors influencing the estimation of vegetation aboveground biomass using unmanned aerial systems. Remote Sens 12, 1052.
DOI URL |
[43] |
Qin J, Burks TF, Zhao X, Niphadkar N, Ritenour MA (2011). Multispectral detection of citrus canker using hyperspectral band selection. Trans ASABE 54, 2331-2341.
DOI URL |
[44] |
Rinnan Å, van den Berg F, Engelsen SB (2009). Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal Chem 28, 1201-1222.
DOI URL |
[45] |
Rocchini D, Butini SA, Chiarucci A (2005). Maximizing plant species inventory efficiency by means of remotely sensed spectral distances. Global Ecol Biogeogr 14, 431-437.
DOI URL |
[46] |
Salimi Z, Boelt B (2019). Classification of processing damage in sugar beet (Beta vulgaris) seeds by multispectral image analysis. Sensors 19, 2360.
DOI URL |
[47] |
Slaughter DC, Obenland DM, Thompson JF, Arpaia ML, Margosan DA (2008). Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence. Postharvest Biol Tec 48, 341-346.
DOI URL |
[48] |
Su WH, Sun DW (2018). Multispectral imaging for plant food quality analysis and visualization. Compr Rev Food Sci Food Saf 17, 220-239.
DOI URL |
[49] |
Sun GX, Ding YQ, Wang XC, Lu W, Sun Y, Yu HF (2019). Nondestructive determination of nitrogen, phosphorus and potassium contents in greenhouse tomato plants based on multispectral three-dimensional imaging. Sensors 19, 5295.
DOI URL |
[50] |
Thorp KR, Thompson AL, Harders SJ, French AN, Ward RW (2018). High-throughput phenotyping of crop water use efficiency via multispectral drone imagery and a daily soil water balance model. Remote Sens 10, 1682.
DOI URL |
[51] |
Veys C, Chatziavgerinos F, AlSuwaidi A, Hibbert J, Hansen M, Bernotas G, Smith M, Yin HJ, Rolfe S, Grieve B (2019). Multispectral imaging for presymptomatic analysis of light leaf spot in oilseed rape. Plant Methods 15, 4.
DOI URL |
[52] |
Vrešak M, Olesen MH, Gislum R, Bavec F, Jørgensen JR (2016). The use of image-spectroscopy technology as a diagnostic method for seed health testing and variety identification. PLoS One 11, e0152011.
DOI URL |
[53] |
Wang H, Qian XJ, Zhang L, Xu SL, Li HF, Xia XJ, Dai LK, Xu L, Yu JQ, Liu X (2018). A method of high throughput monitoring crop physiology using chlorophyll fluorescence and multispectral imaging. Front Plant Sci 9, 407.
DOI URL |
[54] |
Wang LJ, Duan YH, Zhang LB, Wang JL, Li YK, Jin J (2020). LeafScope: a portable high-resolution multispectral imager for in vivo imaging soybean leaf. Sensors 20, 2194.
DOI URL |
[55] | Wei X, He JC, Ye DP, Jie DF (2017). Navel orange maturity classification by multispectral indexes based on hyperspectral diffuse transmittance imaging. J Food Quality 2017, 1023498. |
[56] | Yin SY, Bi XQ, Niu Y, Gu XM, Xiao Y (2017). Hyperspectral classification for identifying decayed oranges infected by fungi. Emir J Food Agric 29, 601-609. |
[57] |
Zhang C, Jiang H, Liu F, He Y (2017). Application of near-infrared hyperspectral imaging with variable selection methods to determine and visualize caffeine content of coffee beans. Food Bioprocess Technol 10, 213-221.
DOI URL |
[1] | 周楷玲, 赵玉金, 白永飞. 基于Sentinel-2A数据的东北森林植物多样性监测方法研究[J]. 植物生态学报, 2022, 46(10): 1251-1267. |
[2] | 田佳玉, 王彬, 张志明, 林露湘. 光谱多样性在植物多样性监测与评估中的应用[J]. 植物生态学报, 2022, 46(10): 1129-1150. |
[3] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[4] | 徐岩, 张聪伶, 降瑞娇, 王子斐, 朱梦晨, 沈国春. 无人机高光谱影像与冠层树种多样性监测[J]. 生物多样性, 2021, 29(5): 647-660. |
[5] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[6] | 赵睿, 卜红梅, 宋献方, 高融瑾. 再生水补给河道内芦苇的光谱特征及其对水体氮和磷含量的响应[J]. 植物学报, 2020, 55(6): 666-676. |
[7] | 衣海燕, 曾源, 赵玉金, 郑朝菊, 熊杰, 赵旦. 利用聚类算法监测森林乔木物种多样性[J]. 植物生态学报, 2020, 44(6): 598-615. |
[8] | 郭庆华, 胡天宇, 马勤, 徐可心, 杨秋丽, 孙千惠, 李玉美, 苏艳军. 新一代遥感技术助力生态系统生态学研究[J]. 植物生态学报, 2020, 44(4): 418-435. |
[9] | 雷倩, 李金亚, 马克明. 遥感技术在鸟类生态学研究中的应用[J]. 生物多样性, 2018, 26(8): 862-877. |
[10] | 汪星, 宫兆宁, 井然, 张磊, 金点点. 基于连续统去除法的水生植物提取及其时空变化分析——以官厅水库库区为例[J]. 植物生态学报, 2018, 42(6): 640-652. |
[11] | 张峰,周广胜. 植被含水量高光谱遥感监测研究进展[J]. 植物生态学报, 2018, 42(5): 517-525. |
[12] | 周智, 张永丽, 王变变, 盖淑杰, 王若仲, 卢向阳, 李瑞莲. 荧光粉激发型LED光对拟南芥生长发育的影响[J]. 植物学报, 2018, 53(4): 502-508. |
[13] | 庞家平, 温学发. 稳定同位素红外光谱技术测定CO2同位素校正方法的研究进展[J]. 植物生态学报, 2018, 42(2): 143-152. |
[14] | 刘畅, 孙鹏森, 刘世荣. 水分敏感的反射光谱指数比较研究——以锐齿槲栎为例[J]. 植物生态学报, 2017, 41(8): 850-861. |
[15] | 张浩, 吕茂奎, 谢锦升. 红壤侵蚀区芒萁对土壤可溶性有机质光谱特征的影响[J]. 植物生态学报, 2017, 41(8): 862-871. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||