植物学报 ›› 2020, Vol. 55 ›› Issue (3): 308-317.DOI: 10.11983/CBB19231
赵佳宁1,梁韵2,柳莹3,王玉珏1,杨倩茹1,肖春旺1,*()
收稿日期:
2019-11-29
接受日期:
2020-02-26
出版日期:
2020-05-01
发布日期:
2020-07-06
通讯作者:
肖春旺
基金资助:
Jianing Zhao1,Yun Liang2,Ying Liu3,Yujue Wang1,Qianru Yang1,Chunwang Xiao1,*()
Received:
2019-11-29
Accepted:
2020-02-26
Online:
2020-05-01
Published:
2020-07-06
Contact:
Chunwang Xiao
摘要: 根系周转是陆地生态系统碳循环的关键过程, 对研究土壤碳库变化及全球气候变化均具有重要意义。然而由于根系周转率的测量计算方法较多, 不同方法得出的结果差异较大, 且目前对全球区域尺度上森林生态系统根系周转的研究还不够充分, 使得全球森林生态系统根系周转变化规律仍不清楚。该研究通过收集文献数据并统一周转率计算方法, 对全球5种森林类型的细根周转空间格局进行整合, 同时结合土壤理化性质和气候数据, 得出影响森林生态系统细根周转的因子。结果表明, 不同森林类型细根周转率存在显著差异, 且随着纬度的升高逐渐降低; 森林生态系统细根周转率与年平均温度和年平均降水量呈正相关; 森林生态系统细根周转率与土壤有机碳含量呈正相关但与土壤pH值呈负相关。该研究为揭示森林生态系统细根周转规律及机制提供了科学依据。
赵佳宁, 梁韵, 柳莹, 王玉珏, 杨倩茹, 肖春旺. 森林生态系统细根周转规律及影响因素. 植物学报, 2020, 55(3): 308-317.
Jianing Zhao, Yun Liang, Ying Liu, Yujue Wang, Qianru Yang, Chunwang Xiao. Patterns and Influence Factors of Fine Root Turnover in Forest Ecosystems. Chinese Bulletin of Botany, 2020, 55(3): 308-317.
Plot | Continent | Country | Longitude and latitude | Plot | Continent | Country | Longitude and latitude |
---|---|---|---|---|---|---|---|
1 | Asia | India | 77°15'E, 8°28'59"N | 36 | Asia | China | 128°5'40.56"E, 42°23'57.48"N |
2 | Asia | India | 76°49'59"E, 9°22'1"N | 37 | Asia | China | 128°4'59.88"E, 42°24'N |
3 | Asia | India | 77°25'58.8"E, 9°31'58.8"N | 38 | Asia | China | 128°6'29.16"E, 42°25'15.24"N |
4 | Asia | India | 79°55'1.2"E, 12°10'58.8"N | 39 | Asia | China | 128°30'E, 43°4'58.8"N |
5 | Asia | China | 110°31'19.2"E, 20°1'1.2"N | 40 | Asia | China | 127°31'48"E, 44°22'48"N |
6 | Asia | China | 112°49'58.8"E, 22°34'1.2"N | 41 | Asia | China | 88°13'48"E, 44°37'12"N |
7 | Asia | China | 117°18'E, 23°35'24"N | 42 | Asia | Japan | 142°6'E, 45°3'N |
8 | Asia | India | 91°55'58.8"E, 25°34'1.2"N | 43 | Asia | China | 128°53'13.2"E, 47°10'51.6"N |
9 | Asia | China | 117°57'E, 26°28'1.2"N | 44 | Asia | China | 127°54'36"E, 47°13'48"N |
10 | Asia | China | 110°7'58.8"E, 27°9'N | 45 | North America | Panama | 82°15'W, 8°45'N |
11 | Asia | China | 119°10'48"E, 27°52'12"N | 46 | North America | Puerto Rico | 65°49'1.2"W, 18°40'1.2"N |
12 | Asia | China | 113°1'48"E, 28°7'12"N | 47 | North America | USA | 84°30'W, 31°15'N |
13 | Asia | China | 91°19'58.8"E, 29°40'1.2"N | 48 | North America | USA | 92°W, 32°N |
14 | Asia | China | 121°46'58.8"E, 29°48'N | 49 | North America | USA | 111°45'W, 35°16'1.2"N |
15 | Asia | China | 103°25'1.2"E, 29°58'58.8"N | 50 | North America | USA | 76°27'43.2"W, 36°31'58.8"N |
16 | Asia | China | 102°48'E, 30°1'1.2"N | 51 | North America | USA | 82°22'1.2"W, 39°10'58.8"N |
17 | Asia | China | 117°24'E, 30°22'12"N | 52 | North America | USA | 78°45'57.6"W, 41°35'52.8"N |
18 | Asia | China | 117°43'48"E, 30°22'48"N | 53 | North America | USA | 72°11'24"W, 42°31'51.6"N |
19 | Asia | India | 79°56'24"E, 30°28'58.8"N | 54 | North America | USA | 71°45'W, 43°55'58.8"N |
20 | Asia | China | 117°53'24"E, 30°34'48"N | 55 | North America | USA | 72°13'1.2"W, 44°N |
21 | Asia | China | 117°54'E, 30°34'48"N | 56 | North America | USA | 122°13'1.2"W, 44°13'58.8"N |
22 | Asia | China | 121°54'25.2"E, 30°52'55.2"N | 57 | North America | USA | 121°34'1.2"W, 44°25'58.8"N |
23 | Asia | India | 75°40'12"E, 30°54'N | 58 | North America | USA | 68°41'6"W, 44°55'19.2"N |
24 | Asia | China | 119°13'58.8"E, 31°58'58.8"N | 59 | North America | USA | 122°W, 46°N |
25 | Asia | Japan | 131°12'E, 32°3'N | 60 | North America | Canada | 89°28'58.8"W, 49°32'24"N |
26 | Asia | China | 108°7'58.8"E, 33°58'1.2"N | 61 | Europe | Italy | 14°33'E, 41°43'1.2"N |
27 | Asia | Japan | 135°37'1.2"E, 34°4'58.8"N | 62 | Europe | France | 3°49'4.8"E, 43°41'16.8"N |
28 | Asia | China | 116°49'58.8"E, 35°52'58.8"N | 63 | Europe | France | 4°37'48"E, 49°45'36"N |
29 | Asia | Japan | 104°7'55.2"E, 36°N | 64 | Europe | Germany | 10°26'2.4"E, 51°4'48"N |
30 | Asia | Japan | 140°13'1.2"E, 36°6'N | 65 | Europe | Belgium | 3°51'E, 51°6'N |
31 | Asia | Korea | 127°42'E, 37°30'N | 66 | Europe | Estonia | 26°45'E, 58°46'1.2"N |
32 | Asia | China | 112°31'1.2"E, 37°39'N | 67 | Europe | Finland | 30°58'1.2"E, 62°46'58.8"N |
33 | Asia | China | 115°25'8.4"E, 39°57'N | 68 | South America | Brazil | 56°58'59"W, 3°4'1"S |
34 | Asia | China | 87°51'25.2"E, 40°27'57.6"N | 69 | South America | Brazil | 47°56'56"W, 1°17'53"S |
35 | Asia | China | 117°15'E, 42°19'12"N | 70 | Africa | C?te d'Ivoire | 5°13'1.2"W, 6°16'59"N |
表1 研究样点的分布(数据来源见附录1)
Table 1 Distribution of study sites (see Appendix 1 for data sources)
Plot | Continent | Country | Longitude and latitude | Plot | Continent | Country | Longitude and latitude |
---|---|---|---|---|---|---|---|
1 | Asia | India | 77°15'E, 8°28'59"N | 36 | Asia | China | 128°5'40.56"E, 42°23'57.48"N |
2 | Asia | India | 76°49'59"E, 9°22'1"N | 37 | Asia | China | 128°4'59.88"E, 42°24'N |
3 | Asia | India | 77°25'58.8"E, 9°31'58.8"N | 38 | Asia | China | 128°6'29.16"E, 42°25'15.24"N |
4 | Asia | India | 79°55'1.2"E, 12°10'58.8"N | 39 | Asia | China | 128°30'E, 43°4'58.8"N |
5 | Asia | China | 110°31'19.2"E, 20°1'1.2"N | 40 | Asia | China | 127°31'48"E, 44°22'48"N |
6 | Asia | China | 112°49'58.8"E, 22°34'1.2"N | 41 | Asia | China | 88°13'48"E, 44°37'12"N |
7 | Asia | China | 117°18'E, 23°35'24"N | 42 | Asia | Japan | 142°6'E, 45°3'N |
8 | Asia | India | 91°55'58.8"E, 25°34'1.2"N | 43 | Asia | China | 128°53'13.2"E, 47°10'51.6"N |
9 | Asia | China | 117°57'E, 26°28'1.2"N | 44 | Asia | China | 127°54'36"E, 47°13'48"N |
10 | Asia | China | 110°7'58.8"E, 27°9'N | 45 | North America | Panama | 82°15'W, 8°45'N |
11 | Asia | China | 119°10'48"E, 27°52'12"N | 46 | North America | Puerto Rico | 65°49'1.2"W, 18°40'1.2"N |
12 | Asia | China | 113°1'48"E, 28°7'12"N | 47 | North America | USA | 84°30'W, 31°15'N |
13 | Asia | China | 91°19'58.8"E, 29°40'1.2"N | 48 | North America | USA | 92°W, 32°N |
14 | Asia | China | 121°46'58.8"E, 29°48'N | 49 | North America | USA | 111°45'W, 35°16'1.2"N |
15 | Asia | China | 103°25'1.2"E, 29°58'58.8"N | 50 | North America | USA | 76°27'43.2"W, 36°31'58.8"N |
16 | Asia | China | 102°48'E, 30°1'1.2"N | 51 | North America | USA | 82°22'1.2"W, 39°10'58.8"N |
17 | Asia | China | 117°24'E, 30°22'12"N | 52 | North America | USA | 78°45'57.6"W, 41°35'52.8"N |
18 | Asia | China | 117°43'48"E, 30°22'48"N | 53 | North America | USA | 72°11'24"W, 42°31'51.6"N |
19 | Asia | India | 79°56'24"E, 30°28'58.8"N | 54 | North America | USA | 71°45'W, 43°55'58.8"N |
20 | Asia | China | 117°53'24"E, 30°34'48"N | 55 | North America | USA | 72°13'1.2"W, 44°N |
21 | Asia | China | 117°54'E, 30°34'48"N | 56 | North America | USA | 122°13'1.2"W, 44°13'58.8"N |
22 | Asia | China | 121°54'25.2"E, 30°52'55.2"N | 57 | North America | USA | 121°34'1.2"W, 44°25'58.8"N |
23 | Asia | India | 75°40'12"E, 30°54'N | 58 | North America | USA | 68°41'6"W, 44°55'19.2"N |
24 | Asia | China | 119°13'58.8"E, 31°58'58.8"N | 59 | North America | USA | 122°W, 46°N |
25 | Asia | Japan | 131°12'E, 32°3'N | 60 | North America | Canada | 89°28'58.8"W, 49°32'24"N |
26 | Asia | China | 108°7'58.8"E, 33°58'1.2"N | 61 | Europe | Italy | 14°33'E, 41°43'1.2"N |
27 | Asia | Japan | 135°37'1.2"E, 34°4'58.8"N | 62 | Europe | France | 3°49'4.8"E, 43°41'16.8"N |
28 | Asia | China | 116°49'58.8"E, 35°52'58.8"N | 63 | Europe | France | 4°37'48"E, 49°45'36"N |
29 | Asia | Japan | 104°7'55.2"E, 36°N | 64 | Europe | Germany | 10°26'2.4"E, 51°4'48"N |
30 | Asia | Japan | 140°13'1.2"E, 36°6'N | 65 | Europe | Belgium | 3°51'E, 51°6'N |
31 | Asia | Korea | 127°42'E, 37°30'N | 66 | Europe | Estonia | 26°45'E, 58°46'1.2"N |
32 | Asia | China | 112°31'1.2"E, 37°39'N | 67 | Europe | Finland | 30°58'1.2"E, 62°46'58.8"N |
33 | Asia | China | 115°25'8.4"E, 39°57'N | 68 | South America | Brazil | 56°58'59"W, 3°4'1"S |
34 | Asia | China | 87°51'25.2"E, 40°27'57.6"N | 69 | South America | Brazil | 47°56'56"W, 1°17'53"S |
35 | Asia | China | 117°15'E, 42°19'12"N | 70 | Africa | C?te d'Ivoire | 5°13'1.2"W, 6°16'59"N |
图1 森林生态系统的细根周转率与纬度格局 **表示在0.01水平显著相关。
Figure 1 Patterns of fine root turnover rate in forest ecosystems with latitude ** indicates significant correlation at the 0.01 level.
Forest type | Data number | Means ± SE |
---|---|---|
Tropical rainforest | 11 | 1.312±0.182 a |
Subtropical evergreen broad-leaved forest | 9 | 0.802±0.161 b |
Warm temperate deciduous broad-leaved forest | 13 | 0.724±0.859 b |
Temperate coniferous and broad-leaved mixed forest | 30 | 0.766±0.995 b |
Cold temperate coniferous forest | 7 | 0.602±0.106 b |
表2 不同森林类型的细根周转率
Table 2 Fine root turnover rate in different types of forest ecosystem
Forest type | Data number | Means ± SE |
---|---|---|
Tropical rainforest | 11 | 1.312±0.182 a |
Subtropical evergreen broad-leaved forest | 9 | 0.802±0.161 b |
Warm temperate deciduous broad-leaved forest | 13 | 0.724±0.859 b |
Temperate coniferous and broad-leaved mixed forest | 30 | 0.766±0.995 b |
Cold temperate coniferous forest | 7 | 0.602±0.106 b |
图2 森林生态系统细根周转率与年平均温度(A)和年平均降水量(B)的关系 *表示在0.05水平显著相关。
Figure 2 Relationships between fine root turnover rate in forest ecosystems and mean annual temperature (A) and mean annual precipitation (B) * indicates significant correlation at the 0.05 level.
图3 森林细根周转率与土壤理化性质之间的关系 CEC: 土壤阳离子交换量。*表示在0.05水平显著相关。
Figure 3 Relationships between forest fine root turnover rate and soil physical and chemical properties CEC: Soil cation exchange capacity. * indicates significant correlation at the 0.05 level.
MAT | MAP | Soil organic carbon | Soil pH | Soil bulk density | CEC | Sand fraction | Clay fraction | Silt fraction | lg (fine root turnover rate) | |
---|---|---|---|---|---|---|---|---|---|---|
Latitude | -0.867** | -0.609** | -0.164 | 0.168 | 0.348** | 0.157 | 0.124 | 0.097 | 0.105 | -0.367** |
MAT | 0.576** | -0.029 | -0.009 | -0.332** | -0.03 | -0.211 | -0.011 | 0.361** | 0.233* | |
MAP | -0.101 | -0.094 | -0.254* | -0.048 | -0.167 | 0.052 | 0.221 | 0.240* | ||
Soil organic carbon | -0.449** | 0.14 | 0.11 | 0.126 | -0.171 | 0.029 | 0.254* | |||
Soil pH | 0.026 | 0.235 | -0.041 | 0.231 | -0.165 | -0.297* | ||||
Soil bulk density | -0.464** | 0.900** | -0.599** | -0.852** | -0.098 | |||||
CEC | -0.545** | 0.376* | 0.491** | -0.071 | ||||||
Sand fraction | -0.823** | -0.772** | 0.038 | |||||||
Clay fraction | 0.284* | -0.146 | ||||||||
Silt fraction | 0.104 |
表3 纬度、年平均温度、年平均降水量、土壤有机碳含量、土壤pH值、土壤容重、土壤阳离子交换量、沙土含量、壤土含量、黏土含量与细根周转率的Pearson相关关系
Table 3 Pearson correlations among latitude, mean annual temperature, mean annual precipitation, soil organic carbon content, soil pH, soil bulk density, CEC, sand fraction, silt fraction, clay fraction, and fine root turnover rate
MAT | MAP | Soil organic carbon | Soil pH | Soil bulk density | CEC | Sand fraction | Clay fraction | Silt fraction | lg (fine root turnover rate) | |
---|---|---|---|---|---|---|---|---|---|---|
Latitude | -0.867** | -0.609** | -0.164 | 0.168 | 0.348** | 0.157 | 0.124 | 0.097 | 0.105 | -0.367** |
MAT | 0.576** | -0.029 | -0.009 | -0.332** | -0.03 | -0.211 | -0.011 | 0.361** | 0.233* | |
MAP | -0.101 | -0.094 | -0.254* | -0.048 | -0.167 | 0.052 | 0.221 | 0.240* | ||
Soil organic carbon | -0.449** | 0.14 | 0.11 | 0.126 | -0.171 | 0.029 | 0.254* | |||
Soil pH | 0.026 | 0.235 | -0.041 | 0.231 | -0.165 | -0.297* | ||||
Soil bulk density | -0.464** | 0.900** | -0.599** | -0.852** | -0.098 | |||||
CEC | -0.545** | 0.376* | 0.491** | -0.071 | ||||||
Sand fraction | -0.823** | -0.772** | 0.038 | |||||||
Clay fraction | 0.284* | -0.146 | ||||||||
Silt fraction | 0.104 |
[1] | 陈莉莉, 袁志友, 穆兴民, 焦峰, 邓强 (2015). 森林细根生产力研究进展. 西北林学院学报 30(3), 70-75, 80. |
[2] | 范月君, 侯向阳, 石红霄, 师尚礼 (2012). 气候变暖对草地生态系统碳循环的影响. 草业学报 21, 294-302. |
[3] | 江洪, 白莹莹, 饶应福, 陈冲, 蔡永立 (2016). 新围垦盐土地三种人工林群落细根生物量及其影响因素分析. 植物学报 51, 343-352. |
[4] | 赖宗锐 (2015). 四种典型沙生灌木细根动态及其对土壤有机碳的影响. 博士论文. 北京: 北京林业大学. pp. 10-11. |
[5] | 李高飞, 任海 (2004). 中国不同气候带各类型森林的生物量和净第一性生产力. 热带地理 24, 306-310. |
[6] | 李凌浩, 林鹏, 邢雪荣 (1998). 武夷山甜槠林细根生物量和生长量研究. 应用生态学报 9, 337-340. |
[7] | 刘秀 (2018). 红树林地上凋落物和细根对土壤有机质的相对贡献. 博士论文. 北京: 中国林业科学研究院. pp. 3. |
[8] | 梅莉, 王政权, 程云环, 郭大立 (2004). 林木细根寿命及其影响因子研究进展. 植物生态学报 28, 704-710. |
[9] | 倪惠菁, 苏文会, 范少辉, 曾宪礼, 金艺 (2019). 养分输入方式对森林生态系统土壤养分循环的影响研究进展. 生态学杂志 38, 863-872. |
[10] | 孙元丰, 万宏伟, 赵玉金, 陈世苹, 白永飞 (2018). 中国草地生态系统根系周转的空间格局和驱动因子. 植物生态学报 42, 337-348. |
[11] | 王瑞丽, 程瑞梅, 肖文发, 封晓辉, 刘泽彬, 王晓荣 (2012). 森林细根生产和周转的影响因素. 世界林业研究 25, 19-24. |
[12] | 王韶仲 (2017). 树木细根形态结构和生物量动态的地理变异. 博士论文. 哈尔滨: 东北林业大学. pp. 57-58. |
[13] | 王玉霞 (2014). 地下净生产力、光合产物分配及根系周转对不同草地恢复措施的响应. 硕士论文. 长春: 东北师范大学. pp. 5. |
[14] | 吴伊波, 车荣晓, 马双, 邓永翠, 朱敏健, 崔骁勇 (2014). 高寒草甸植被细根生产和周转的比较研究. 生态学报 34, 3529-3537. |
[15] | 肖春旺, 杨帆, 柳隽瑶, 周勇, 苏佳琦, 梁韵, 裴智琴 (2017). 陆地生态系统地下碳输入与输出过程研究进展. 植物学报 52, 652-668. |
[16] | 杨海廷 (2019). 土壤性能对树木细根生长的影响. 乡村科技 (21), 54-55. |
[17] | 张丽, 张爽 (2018). 土壤pH值对绿化树生长的影响. 江西农业(16), 92, 97. |
[18] | 张小全, 吴可红 (2001). 森林细根生产和周转研究. 林业科学 37(3), 126-138. |
[19] | 张鑫, 邢亚娟, 闫国永, 王庆贵 (2018). 细根对降水变化响应的meta分析. 植物生态学报 42, 164-172. |
[20] | 周松文 (2013). 不同气候带森林凋落物的变化. 现代园艺 (12), 15. |
[21] | Diabate B (2016). 松嫩草地地下净生产力和细根动态对不同的管理实践的响应. 博士论文. 长春: 东北师范大学. pp. 78-79. |
[22] | Aber JD, Melillo JM, Nadelhoffer KJ, McClaugherty CA, Pastor J (1985). Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia 66, 317-321. |
[23] | Arthur MA, Fahey TJ (1992). Biomass and nutrients in an Engelmann spruce—subalpine fir forest in north central Colorado: pools, annual production, and internal cycling. Can J For Res 22, 315-325. |
[24] | Bai WM, Wan SQ, Niu SL, Liu WX, Chen QS, Wang QB, Zhang WH, Han XG, Li LH (2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Glob Chang Biol 16, 1306-1316. |
[25] | Brunner I, Bakker MR, Björk RG, Hirano Y, Lukac M, Aranda X, Børja I, Eldhuset TD, Helmisaari HS, Jourdan C, Konôpka B, López BC, Pérez CM, Persson H, Ostonen I (2013). Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores. Plant Soil 362, 357-372. |
[26] | Cai HY, Li FR, Jin GZ (2019). Fine root biomass, production and turnover rates in plantations versus natural forests: effects of stand characteristics and soil properties. Plant Soil 436, 463-474. |
[27] | Cavelier J, Wright SJ, Santamaria J (1999). Effects of irrigation on litterfall, fine root biomass and production in a semideciduous lowland forest in Panama. Plant Soil 211, 207-213. |
[28] | Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytol 147, 13-31. |
[29] | Heimann M, Reichstein M (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289-292. |
[30] | Henry AL, Cleland EE, Field CB, Vitousek PM (2005). Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland. Oecologia 142, 465-473. |
[31] | Iversen CM, Ledford J, Norby RJ (2008). CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytol 179, 837-847. |
[32] | Joslin JD, Wolfe MH, Hanson PJ (2000). Effects of altered water regimes on forest root systems. New Phytol 147, 117-129. |
[33] | Kosola KR, Eissenstat DM, Graham JH (1995). Root demography of mature citrus trees: the influence of Phytophthora nicotianae. Plant Soil 171, 283-288. |
[34] | Liu L, Yang F, Wang YJ, Shen X, Janssens IA, Guenet B, Xiao CW (2019). Fine-root turnover, litterfall, and soil microbial community of three mixed coniferous-deciduous forests dominated by Korean pine (Pinus koraiensis) along a latitudinal gradient. Front Plant Sci 10, 1298. |
[35] | Liu W, Wang GL, Yu KX, Li P, Xiao L, Liu GB (2018). A new method to optimize root order classification based on the diameter interval of fine root. Sci Rep 8, 2960. |
[36] | Luo YQ (2003). Uncertainties in interpretation of isotope signals for estimation of fine root longevity: theoretical considerations. Glob Chang Biol 9, 1118-1129. |
[37] | Majdi H, Pregitzer K, Morén AS, Nylund JE, Ågren GI (2005). Measuring fine root turnover in forest ecosystems. Plant Soil 276, 1-8. |
[38] |
Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003). Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302, 1385-1387.
URL PMID |
[39] | Pritchard SG, Strand AE (2008). Can you believe what you see? Reconciling minirhizotron and isotopically derived estimates of fine root longevity. New Phytol 177, 287-291. |
[40] |
Silver WL, Miya RK (2001). Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129, 407-419.
URL PMID |
[41] |
Trumbore SE, Gaudinski JB (2003). The secret lives of roots. Science 302, 1344-1345.
DOI URL PMID |
[42] | Vogt KA, Vogt DJ, Bloomfield J (1998). Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200, 71-89. |
[43] | Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1995). Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187, 159-219. |
[44] | Wang AS, Angle JS, Chaney RL, Delorme TA, McIntosh M (2006). Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol Biochem 38, 1451-1461. |
[45] | Wang SZ, Wang ZQ, Gu JC (2017). Variation patterns of fine root biomass, production and turnover in Chinese forests. J For Res 28, 1185-1194. |
[46] | Xiao CW, Janssens IA, Sang WG, Wang RZ, Xie ZQ, Pei ZQ, Yi Y (2010). Belowground carbon pools and dynamics in China’s warm temperate and sub-tropical deciduous forests. Biogeosciences 7, 275-287. |
[47] | Xiao CW, Sang WG, Wang RZ (2008). Fine root dynamics and turnover rate in an Asia white birch forest of Donglingshan Mountain, China. For Ecol Manage 255, 765-773. |
[48] | Yuan ZY, Chen HYH (2010). Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. CRC Crit Rev Plant Sci 29, 204-221. |
[49] | Zhou Y, Su JQ, Janssens IA, Zhou GS, Xiao CW (2014). Fine root and litterfall dynamics of three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant Soil 374, 19-32. |
[1] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[2] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[3] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[4] | 孙维悦, 舒江平, 顾钰峰, 莫日根高娃, 杜夏瑾, 刘保东, 严岳鸿. 基于保护基因组学揭示荷叶铁线蕨的濒危机制[J]. 生物多样性, 2022, 30(7): 21508-. |
[5] | 姚海凤, 张赛超, 上官华媛, 李志鹏, 孙新. 城市化对土壤动物群落结构和多样性的影响[J]. 生物多样性, 2022, 30(12): 22547-. |
[6] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[7] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[8] | 张央, 安明态, 武建勇, 刘锋, 汪伟. 中国兜兰属宽瓣亚属植物地理分布格局及其主导气候因子[J]. 植物生态学报, 2022, 46(1): 40-50. |
[9] | 许祖昌, 罗亚皇, 秦声远, 朱光福, 李德铢. 中国竹类植物馆藏标本现状与地理分布[J]. 生物多样性, 2021, 29(7): 897-909. |
[10] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[11] | 徐光来, 李爱娟, 徐晓华, 杨先成, 杨强强. 中国生态功能保护区归一化植被指数动态及气候因子驱动[J]. 植物生态学报, 2021, 45(3): 213-223. |
[12] | 王兆鹏, 张同文, 袁玉江, 张瑞波, 喻树龙, 刘蕊, 石仁娜•加汗, 郭冬, 王勇辉. 罗霄山南部4个针叶树种生长特征及其气候响应对比分析[J]. 植物生态学报, 2021, 45(12): 1303-1313. |
[13] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[14] | 董雪蕊, 张红, 张明罡. 基于系统发育的黄土高原地区木本植物多样性及特有性格局[J]. 生物多样性, 2019, 27(12): 1269-1278. |
[15] | 杨继鸿, 李亚楠, 卜海燕, 张世挺, 齐威. 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 863-876. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||