植物学报 ›› 2019, Vol. 54 ›› Issue (6): 779-785.DOI: 10.11983/CBB19137
陈威1,杨颖增1,2,陈锋1,2,周文冠1,2,舒凯1,*()
收稿日期:
2019-07-18
接受日期:
2019-10-17
出版日期:
2019-11-01
发布日期:
2020-07-09
通讯作者:
舒凯
基金资助:
Wei Chen1,Yingzeng Yang1,2,Feng Chen1,2,Wenguan Zhou1,2,Kai Shu1,*()
Received:
2019-07-18
Accepted:
2019-10-17
Online:
2019-11-01
Published:
2020-07-09
Contact:
Kai Shu
摘要: 植物因其固着生长的方式, 已经进化出各类特殊的机制来适应多变的外界环境。为提高自身的存活率, 植物进化出一类胁迫记忆机制, 以适应环境和保护自己。表观遗传修饰不仅能调控植物的正常生长发育, 而且参与植物对各种非生物或生物胁迫的响应。近年的研究表明, 表观遗传修饰在植物胁迫记忆调控中也发挥重要作用。例如, DNA甲基化、组蛋白甲基化及乙酰化等表观遗传修饰参与并维持特定的胁迫记忆。该文主要对表观遗传修饰介导的植物胁迫记忆最新进展进行综述, 并展望未来的重点和热点研究方向。
陈威,杨颖增,陈锋,周文冠,舒凯. 表观遗传修饰介导的植物胁迫记忆. 植物学报, 2019, 54(6): 779-785.
Wei Chen,Yingzeng Yang,Feng Chen,Wenguan Zhou,Kai Shu. Stress Memory Mediated by Epigenetic Modification in Plants. Chinese Bulletin of Botany, 2019, 54(6): 779-785.
修饰方式 | 胁迫类型 | 相关基因或调控因子 | 物种 | 机理 | 参考文献 |
---|---|---|---|---|---|
DNA 甲基化 | 干旱 | 桃叶蓼 | DNA甲基化能介导干旱胁迫记忆的维持, 而DNA去甲基化处理会移除干旱胁迫记忆 | ||
拟南芥 | 干旱胁迫记忆导致全基因组DNA低甲基化 | ||||
盐 | 水稻 | 盐胁迫导致可遗传的DNA甲基化变化 | |||
DNA糖基化酶 | 拟南芥 | DNA特定区域的超甲基化介导盐胁迫记忆, 而DNA糖基化酶能够抑制盐胁迫记忆的遗传 | |||
生物 | PR-1 | 拟南芥 | DNA的低甲基化水平增强PR-1的表达, 介导生物胁迫记忆的遗传 | ||
组蛋白 修饰 | 高温 | HSFA2 | 拟南芥 | HSFA2能够维持高水平的H3K4me3/2, 从而维持高温胁迫记忆 | |
FGT1 | 拟南芥 | FGT1诱导并维持记忆基因的表达, 通过调控核小体占位介导胁迫记忆 | |||
HSFA2, REF6 | 拟南芥 | HSFA2与REF6形成一个正反馈回路, 维持H3K27me3去甲基化调控的高温胁迫记忆 | |||
干旱 | RD29B, RAB18 | 拟南芥 | 高水平的H3K4me3修饰可以加快RD29B和RAB18基因的转录 | ||
盐 | HKT1 | 拟南芥 | H3K27me3修饰水平的降低加快HKT1基因的转录 | ||
P5CS1 | 拟南芥 | 高水平的H3K4me3修饰加快P5CS1基因的转录 | |||
低温 | COR15A, ATGOLS3 | 拟南芥 | H3K27me3修饰减少促进COR15A和ATGOLS3基因的转录 | ||
FLC | 拟南芥 | H3K27me3与FLC基因启动子中的起始复合体(PRC2)互作, 进而维持对FLC基因表达的抑制 | |||
生物 | WRKY6, WRKY53 | 拟南芥 | H3K4me3修饰促进WRKY6和WRKY53的转录 | ||
PLANT DEFENSIN1.2 | 拟南芥 | H3K27me3修饰抑制PLANT DEFENSIN1.2基因的转录 | |||
PATHOGENESIS-RELATED GENE1, WRKY6, WRKY53 | 拟南芥 | H3K9ac修饰促进PATHOGENESIS-RELATED GENE1、WRKY6和WRKY53的转录 |
表1 不同胁迫记忆中的表观遗传修饰方式
Table 1 Epigenetic modifications involved in various stress memories
修饰方式 | 胁迫类型 | 相关基因或调控因子 | 物种 | 机理 | 参考文献 |
---|---|---|---|---|---|
DNA 甲基化 | 干旱 | 桃叶蓼 | DNA甲基化能介导干旱胁迫记忆的维持, 而DNA去甲基化处理会移除干旱胁迫记忆 | ||
拟南芥 | 干旱胁迫记忆导致全基因组DNA低甲基化 | ||||
盐 | 水稻 | 盐胁迫导致可遗传的DNA甲基化变化 | |||
DNA糖基化酶 | 拟南芥 | DNA特定区域的超甲基化介导盐胁迫记忆, 而DNA糖基化酶能够抑制盐胁迫记忆的遗传 | |||
生物 | PR-1 | 拟南芥 | DNA的低甲基化水平增强PR-1的表达, 介导生物胁迫记忆的遗传 | ||
组蛋白 修饰 | 高温 | HSFA2 | 拟南芥 | HSFA2能够维持高水平的H3K4me3/2, 从而维持高温胁迫记忆 | |
FGT1 | 拟南芥 | FGT1诱导并维持记忆基因的表达, 通过调控核小体占位介导胁迫记忆 | |||
HSFA2, REF6 | 拟南芥 | HSFA2与REF6形成一个正反馈回路, 维持H3K27me3去甲基化调控的高温胁迫记忆 | |||
干旱 | RD29B, RAB18 | 拟南芥 | 高水平的H3K4me3修饰可以加快RD29B和RAB18基因的转录 | ||
盐 | HKT1 | 拟南芥 | H3K27me3修饰水平的降低加快HKT1基因的转录 | ||
P5CS1 | 拟南芥 | 高水平的H3K4me3修饰加快P5CS1基因的转录 | |||
低温 | COR15A, ATGOLS3 | 拟南芥 | H3K27me3修饰减少促进COR15A和ATGOLS3基因的转录 | ||
FLC | 拟南芥 | H3K27me3与FLC基因启动子中的起始复合体(PRC2)互作, 进而维持对FLC基因表达的抑制 | |||
生物 | WRKY6, WRKY53 | 拟南芥 | H3K4me3修饰促进WRKY6和WRKY53的转录 | ||
PLANT DEFENSIN1.2 | 拟南芥 | H3K27me3修饰抑制PLANT DEFENSIN1.2基因的转录 | |||
PATHOGENESIS-RELATED GENE1, WRKY6, WRKY53 | 拟南芥 | H3K9ac修饰促进PATHOGENESIS-RELATED GENE1、WRKY6和WRKY53的转录 |
[1] | Bannister AJ, Schneider R, Kouzarides T ( 2002). Histone methylation: dynamic or static? Cell 109, 801-806. |
[2] | Berry S, Dean C ( 2015). Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant J 83, 133-148. |
[3] | Bouché F, Woods DP, Amasino RM ( 2017). Winter memory throughout the plant kingdom: different paths to flowering. Plant Physiol 173, 27-35. |
[4] | Boyko A, Blevins T, Yao YL, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Meins F Jr, Kovalchuk I ( 2010). Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS One 5, e9514. |
[5] | Brzezinka K, Altmann S, Czesnick H, Nicolas P, Gorka M, Benke E, Kabelitz T, Jähne F, Graf A, Kappel C, Bäurle I ( 2016). Arabidopsis FORGETTER1 mediates stress- induced chromatin memory through nucleosome remodeling. eLife 5, e17061. |
[6] | Chong SY, Whitelaw E ( 2004). Epigenetic germline inheritance. Curr Opin Genet Dev 14, 692-696. |
[7] | Conrath U, Beckers GJM, Langenbach CJG, Jaskiewicz MR ( 2015). Priming for enhanced defense. Annu Rev Phytopathol 53, 97-119. |
[8] | Ding Y, Fromm M, Avramova Z ( 2012). Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat Commun 3, 740. |
[9] | Ding Y, Liu N, Virlouvet L, Riethoven JJ, Fromm M, Avramova Z ( 2013). Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol 13, 229. |
[10] | Ding Y, Virlouvet L, Liu N, Riethoven JJ, Fromm M, Avramova Z ( 2014). Dehydration stress memory genes of Zea mays; comparison with Arabidopsis thaliana. BMC Plant Biol 14, 141. |
[11] | Eberharter A, Becker PB ( 2002). Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3, 224-229. |
[12] | Ebrahim A, Brunk E, Tan J, O’Brien EJ, Kim D, Szubin R, Lerman JA, Lechner A, Sastry A, Bordbar A, Feist AM, Palsson BO ( 2016). Multi-omic data integration enables discovery of hidden biological regularities. Nat Commun 7, 13091. |
[13] | Feng QZ, Yang CW, Lin XY, Wang JM, Ou XF, Zhang CY, Chen Y, Liu B ( 2012). Salt and alkaline stress induced transgenerational alteration in DNA methylation of rice ( Oryza sativa ). Aust J Crop Sci 6, 877-883. |
[14] | Feng XJ, Li JR, Qi SL, Lin QF, Jin JB, Hua XJ ( 2016). Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis. Proc Natl Acad Sci USA 113, E8335-E8343. |
[15] | Franks SJ, Hoffmann AA ( 2012). Genetics of climate change adaptation. Annu Rev Genet 46, 185-208. |
[16] | Friedrich T, Faivre L, Bäurle I, Schubert D ( 2019). Chromatin-based mechanisms of temperature memory in plants. Plant Cell Environ 42, 762-770. |
[17] | Gruenbaum Y, Naveh-Many T, Cedar H, Razin A ( 1981). Sequence specificity of methylation in higher plant DNA. Nature 292, 860-862. |
[18] | Herman JJ, Sultan SE ( 2016). DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc R Soc B 283, 20160988. |
[19] | Hilker M, Schmülling T ( 2019). Stress priming, memory, and signaling in plants. Plant Cell Environ 42, 753-761. |
[20] | Jaskiewicz M, Conrath U, Peterhänsel C ( 2011). Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12, 50-55. |
[21] | Kwon CS, Lee D, Choi G, Chung WI ( 2009). Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. Plant J 60, 112-121. |
[22] | Lämke J, Bäurle I ( 2017). Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 18, 124. |
[23] | Lämke J, Brzezinka K, Altmann S, Bäurle I ( 2016). A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J 35, 162-175. |
[24] | Li P, Yang H, Wang L, Liu HJ, Huo HQ, Zhang CJ, Liu AZ, Zhu AD, Hu JY, Lin YJ, Liu L ( 2019). Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Front Genet 10, 55. |
[25] | Liu HC, Lämke J, Lin SY, Hung MJ, Liu KM, Charng YY, Bäurle I ( 2018). Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. Plant J 95, 401-413. |
[26] | Liu JZ, Feng LL, Gu XT, Deng X, Qiu Q, Li Q, Zhang YY, Wang MY, Deng YW, Wang ET, He YK, Bäurle I, Li JM, Cao XF, He ZH ( 2019). An H3K27me3 demethylase- HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res 29, 379-390. |
[27] | Luna E, Bruce TJA, Roberts MR, Flors V, Ton J ( 2012). Next-generation systemic acquired resistance. Plant Physiol 158, 844-853. |
[28] | Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CMJ, Pozo MJ, Ton J, van Dam NM, Conrath U ( 2016). Recognizing plant defense priming. Trends Plant Sci 21, 818-822. |
[29] | Molinier J, Ries J, Zipfel C, Hohn B ( 2006). Transgeneration memory of stress in plants. Nature 442, 1046-1049. |
[30] | Rasmann S, de Vos M, Casteel CL, Tian DL, Halitschke R, Sun JY, Agrawal AA, Felton GW, Jander G ( 2012). Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158, 854-863. |
[31] | Richards EJ ( 2006). Inherited epigenetic variation-revisiting soft inheritance. Nat Rev Genet 7, 395-401. |
[32] | Sani E, Herzyk P, Perrella G, Colot V, Amtmann A ( 2013). Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol 14, R59. |
[33] | Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Bäurle I ( 2014). Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26, 1792-1807. |
[34] | van Hulten M, Pelser M, van Loon LC, Pieterse CMJ, Ton J ( 2006). Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103, 5602-5607. |
[35] | Vanyushin BF, Ashapkin VV ( 2011). DNA methylation in higher plants: past, present and future. Biochim Biophys Acta Gene Regul Mech 1809, 360-368. |
[36] | Wang JJ, Meng XW, Dobrovolskaya OB, Orlov YL, Chen M ( 2017). Non-coding RNAs and their roles in stress response in plants. Genom Proteom Bioinformat 15, 301-312. |
[37] | Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, Papareddy R, Putra H, Kageyama J, Becker J, Weigel D, Gutierrez-Marcos J ( 2016). Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife 5, e13546. |
[38] | Yakovlev IA, Carneros E, Lee YK, Olsen JE, Fossdal CG ( 2016). Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta 243, 1237-1249. |
[39] | Zhang XY, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE ( 2009). Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol 10, R62. |
[1] | 罗兰莎, 宋雯佩, 化青珠, 李大卫, 梁红, 张宪智. 植物性别决定基因及其表观遗传调控研究进展[J]. 植物学报, 2024, 59(2): 278-290. |
[2] | 刘婷, 王天浩, 淳雁, 李学勇, 赵金凤. 表观遗传调控植物分枝/分蘖研究进展[J]. 植物学报, 2022, 57(4): 532-548. |
[3] | 李占杰, 秦源. 染色质可及性与植物基因表达调控[J]. 植物学报, 2021, 56(6): 664-675. |
[4] | 宋凝曦, 谢寅峰, 李霞. 干旱胁迫下表观遗传机制对转C4型PEPC基因水稻种子萌发的影响[J]. 植物学报, 2020, 55(6): 677-692. |
[5] | 韩美玲,谭茹姣,晁代印. “绿色革命”新进展: 赤霉素与氮营养双重调控的表观修饰助力水稻高产高效育种[J]. 植物学报, 2020, 55(1): 5-8. |
[6] | 马克平. 生物多样性保护主流化的新机遇[J]. 生物多样性, 2015, 23(5): 557-558. |
[7] | 张德兴. 对我国分子生态学研究近期发展战略的一些思考[J]. 生物多样性, 2015, 23(5): 559-569. |
[8] | 郑小国, 陈亮, 罗利军. 植物中表观遗传修饰研究进展[J]. 植物学报, 2013, 48(5): 561-572. |
[9] | 郭欣欣, 毛雪, 张敏. 锌对不同发育时期子代果蝇基因组DNA甲基化的影响[J]. 生物多样性, 2012, 20(6): 710-715. |
[10] | 颜菱, 刘义飞, 黄宏文. 猕猴桃倍性混合居群基因组遗传和表观遗传变异[J]. 植物学报, 2012, 47(5): 454-461. |
[11] | 张美善, 刘宝. 植物胚乳发育的表观遗传学调控[J]. 植物学报, 2012, 47(2): 101-110. |
[12] | 杜亚琼, 王子成. 甘露醇对拟南芥基因组DNA甲基化的影响[J]. 植物学报, 2011, 46(3): 285-292. |
[13] | 何艳霞;王子成*. 拟南芥幼苗超低温保存后DNA甲基化的遗传变异[J]. 植物学报, 2009, 44(03): 317-322. |
[14] | 南楠;曾凡锁;詹亚光*. 植物DNA甲基化及其研究策略[J]. 植物学报, 2008, 25(01): 102-111. |
[15] | 崔欣 陈庆山 杨庆凯 曹越平. 植物转基因沉默与消除[J]. 植物学报, 2002, 19(03): 374-379. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||