[1] |
Ahrendt LWA (1961). Berberis and Mahonia: a taxonomic revision. Linn Soc London Proc Bot J 57, 1-410.
|
[2] |
Chen XH, Xiang KL, Lian L, Peng HW, Erst AS, Xiang XG, Chen ZD, Wang W (2020). Biogeographic diversification of Mahonia (Berberidaceae): implications for the origin and evolution of East Asian subtropical evergreen broadleaved forests. Mol Phylogenet Evol 151, 106910.
|
[3] |
Doweld AB (2018). New names of fossil Berberidaceae. Phytotaxa 351, 72-80.
|
[4] |
Feijó A, Ge DY, Wen ZX, Cheng JL, Xia L, Yang QS (2021). Exploring GBIF database and extracting climate data from georeferenced localities with R software. Bio-101 1010609. (in Chinese)
|
|
Feijó A, 葛德燕, 温知新, 程继龙, 夏霖, 杨奇森 (2021). 利用R软件在GBIF网站下载和筛选物种分布记录并提取气候数据进行分析. Bio-101 1010609.
|
[5] |
Güner TH, Denk T (2012). The genus Mahonia in the Miocene of Turkey: taxonomy and biogeographic implications. Rev Palaeobot Palynol 175, 32-46.
|
[6] |
Hsieh CL, Yu CC, Huang YL, Chung KF (2022). Mahonia vs. Berberis unloaded: generic delimitation and infrafamilial classification of Berberidaceae based on plastid phylogenomics. Front Plant Sci 12, 720171.
|
[7] |
Hu Q, Huang J, Chen YF, Manchester SR (2017). Mahonia fossils from the Oligocene of South China: taxonomic and biogeographic implications. Palaeoworld 26, 691-698.
|
[8] |
Huang J, Su T, Lebereton-Anberrée J, Zhang ST, Zhou ZK (2016). The oldest Mahonia (Berberidaceae) fossil from East Asia and its biogeographic implications. J Plant Res 129, 209-223.
DOI
PMID
|
[9] |
Kayseri MS (2010). Oligo-miocene Palynology, Palaeobotany, Vertebrate, Marine Faunas, Palaeoclimatology and Palaeovegetation of the Ören Basin (North of the Gökova Gulf), Western Anatolia. PhD dissertation. Izmir: Dokuz Eylül Üniversitesi. pp. 1-569.
|
[10] |
Kvaček Z, Teodoridis V (2019). A putative Australian element in the European Miocene re-investigated—Mahonia exulata (UNGER) KVAČEK & TEODORIDIS comb. nov. et emend. N Jb Geol Palaontol Abh 293, 139-143.
|
[11] |
Kvaček Z, Teodoridis V, Roiron P (2011). A forgotten Miocene mastixioid flora of Arjuzanx (Landes, SW France). Palaeontogr Abt B Palaeophytol 285, 3-111.
|
[12] |
Mai DH, Walther H (1988). Die pliozänen floren von thüringen, deutsche demokratische republik. Quartärpaläontolo- gie 7, 55-242.
|
[13] |
Manchester SR (2000). Late Eocene fossil plants of the John Day Formation, Wheeler County, Oregon. Oreg Geol 62, 51-63, 84.
|
[14] |
Manchester SR (2001). Update on the megafossil flora of Florissant, Colorado. Denver Mus Nat Sci 4, 137-161.
|
[15] |
Postigo-Mijarra JM, Barrón E, DiéGuez C (2014). The late Miocene macroflora of the La Cerdanya Basin (Eastern Pyrenees, Spain): towards a synthesis. Palaeontogr Abt B Palaeophytol 291, 85-129.
|
[16] |
Tang DL, Wang ZE, Ding H, Huang YT, Ding ST, Wu JY (2023). New discovery of Mahonia fossils from the Pliocene of Yunnan, China, and its biogeographical significance. Hist Biol 35, 2435-2448.
|
[17] |
The Angiosperm Phylogeny Group (2016). An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181, 1-20.
|
[18] |
Wu JY (2008). Revision of the Mahonia (Berberidaceae) in China. PhD dissertation. Beijing: Institute of Botany, Chinese Academy of Sciences. pp. 1-105. (in Chinese)
|
|
武建勇 (2008). 国产十大功劳属植物的分类学修订. 博士论文. 北京: 中国科学院植物研究所. pp. 1-105.
|
[19] |
Ying J, Boufford D, Brach A (2011). Berberidaceae. Beijing: Science Press. pp. 772-782.
|
[20] |
Yu CC, Chung KF (2017). Why Mahonia? Molecular recircumscription of Berberis s.l., with the description of two new genera, Alloberberis and Moranothamnus. Taxon 66, 1371-1392.
|