陈先圣1,王雨晨2,3,张洪亮2,彭博3,4,王英力1,黄远1
收稿日期:
2025-05-29
修回日期:
2025-07-20
出版日期:
2025-07-30
发布日期:
2025-07-30
通讯作者:
黄远
基金资助:
Xian-Sheng CHEN1, 3,Zhang .hongliang4, 3,Ying-Li Wang5,远 黄1
Received:
2025-05-29
Revised:
2025-07-20
Online:
2025-07-30
Published:
2025-07-30
Contact:
远 黄
Supported by:
摘要: 园艺植物在文化传承、经济发展及生态系统的可持续性的发展中具有重要意义,但其发展正面临着气候变化、劳动力短缺和资源利用率低下等挑战。园艺作物信息感知技术为其提供了创新的解决方案。其中,植物可穿戴传感器作为一种新兴的监测工具,凭借其高延展性、高柔韧性、高时空分辨率和良好的生物相容性等特点,正逐渐成为植物信息获取的重要技术手段。然而,目前尚缺乏针对可穿戴传感器在园艺植物领域应用的系统性总结。因此,本文围绕着园艺植物的信息检测,综述了植物可穿戴传感器在植物生长监测、含水量检测、茎流量分析、电信号采集和化学物质检测的研究及应用现状。最后,对植物可穿戴传感器的现状进行了总结和展望,以期为园艺植物信息检测做出参考。
陈先圣 王雨晨 张洪亮 彭博 王英力 黄远. 植物可穿戴传感器在园艺作物生理生化信息感知领域的研究进展. 植物学报, DOI: 10.11983/CBB25095.
Xian-Sheng CHEN Zhang .hongliang Ying-Li Wang 远 黄. Advances in Plant Wearable Sensors for the Physiological and Biochemical Information of Horticultural Crops. Chinese Bulletin of Botany, DOI: 10.11983/CBB25095.
Atherton JJ, Rosamond MC, Zeze DA (2012). A leaf-mounted thermal sensor for the measurement of water content. Sens Actuators A Phys 187, 67-72. Borode T, Wang D, Prasad A (2023). Polyaniline-based sensor for real-time plant growth monitoring. Sens Actuators A Phys 355, 114319. Barbosa JA, Freitas VMS, Vidotto LHB, Schleder GR, de Oliveira RAG, Da Rocha JF, Kubota LT, Vieira LCS, Tolentino HCN, Neckel IT, Gobbi AL, Santhiago M, Lima RS (2022). Biocompatible wearable electrodes on leaves toward the on-site monitoring of water loss from plants. ACS Appl Mater Interfaces 14(20), 22989-23001. Chai Y, Chen C, Luo X, Zhan S, Kim J, Luo J, Wang X, Hu Z, Ying Y, Liu X (2021). Cohabiting plant-wearable sensor in situ monitors water transport in plant. Adv Sci 8(10), 2003642. Chen R, Ren S, Li S, Han D, Qin K, Jia X, Zhou H, Gao Z (2023). Recent advances and prospects in wearable plant sensors. Rev Environ Sci Bio 22(4), 933-968. Chen S, Zhao C, Ren R, Jiang J (2023). Salicylic acid had the potential to enhance tolerance in horticultural crops against abiotic stress. Front Plant Sci 14, 1141918. Chen Z, Lu C (2005). Humidity sensors: a review of materials and mechanisms. Sens Lett. 3(4), 274-295. Chu G, Yu S, Wang Y, Zhang W, Xue B, Huang J, Wang Z, Luo J, Sun X, Li M (2024). A wearable electrochemical sensor for the monitoring of neonicotinoid insecticides, salicylic acid and the ph in plant guttation. Chem Eng J 498, 155340. Church J, Armas SM, Patel PK, Chumbimuni Torres K, Lee WH (2018). Development and characterization of needle-type ion-selective microsensors forin?situ determination of foliar uptake of zn2+ in citrus plants. Electroanal 30(4), 626-632. Colaco AF, Molin JP, Rosell-Polo JR, Escola A (2018). Application of light detection and ranging and ultrasonic sensors to high-throughput phenotyping and precision horticulture: current status and challenges. Hortic Res 5(1), 11. Di Tocco J, Lo Presti D, Massaroni C, Cinti S, Cimini S, De Gara L, Schena E (2023). Plant-wear: a multi-sensor plant wearable platform for growth and microclimate monitoring. Sensors (Basel) 23(1), 549. Eitel JUH, Magney TS, Vierling LA, Brown TT, Huggins DR (2014). Lidar based biomass and crop nitrogen estimates for rapid, non-destructive assessment of wheat nitrogen status. Field Crops Res 159, 21-32. Giraldo JP, Wu H, Newkirk GM, Kruss S (2019). Nanobiotechnology approaches for engineering smart plant sensors. Nat Nanotechnol 14(6), 541-553. Hsu HH, Zhang X, Xu K, Wang Y, Wang Q, Luo G, Xing M, Zhong W (2021). Self-powered and plant-wearable hydrogel as led power supply and sensor for promoting and monitoring plant growth in smart farming. Chem Eng J 422, 129499. Huang X, Liu L, Lin YH, Feng R, Shen Y, Chang Y, Zhao H (2023). High-stretchability and low-hysteresis strain sensors using origami-inspired 3d mesostructures. Sci Adv 9(34), eadh9799. Huang Y, Huang Y, Gao M, Tian S, Xie S (2023). Wearable plant sensors based on nanometer-thick ag films on polyethylene glycol terephthalate substrates for real-time monitoring of plant growth. ACS Appl Nano Mater 6(20), 19010-19017. Huang W, Hu N, Xiao Z, Qiu Y, Yang Y, Yang J, Mao X, Wang Y, Li Z, Guo H(2022). A molecular framework of ethylene-mediated fruit growth and ripening processes in tomato. Plant Cell 34(9), 3280-3300. Im H, Lee S, Naqi M, Lee C, Kim S (2018). Flexible pi-based plant drought stress sensor for real-time monitoring system in smart farm. Electronics 7(7), 114. Jeong W, Song J, Bae J, Nandanapalli KR, Lee S (2019). Breathable nanomesh humidity sensor for real-time skin humidity monitoring. ACS Appl Mater Interfaces 11(47), 44758-44763. Jin JY(1998).Precision agriculture and its perspective in China. J Plant Nutr Fert 01,1-7.(in Chinese) 金继运 (1998). “精准农业”及其在我国的应用前景. 植物营养与肥料学报 01, 1-7. Khanal S, Kc K, Fulton JP, Shearer S, Ozkan E (2020). Remote sensing in agriculture-accomplishments, limitations, and opportunities. Remote Sens (Basel) 12(22), 3783. Kim JJ, Allison LK, Andrew TL (2019). Vapor-printed polymer electrodes for long-term, on-demand health monitoring. Sci Adv 5(3), eaaw463. Kuruppuarachchi C, Kulsoom F, Ibrahim H, Khan H, Zahid A, Sher M (2025). Advancements in plant wearable sensors. Comput Electron Agric 229, 109778. Lan L, Le X, Dong H, Xie J, Ying Y, Ping J (2020). One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens Bioelectron 165, 112360. Lee G, Hossain O, Jamalzadegan S, Liu Y, Wang H, Saville AC, Shymanovich T, Paul R, Rotenberg D, Whitfield AE, Ristaino JB, Zhu Y, Wei Q (2023). Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring. Adv Sci 9(15), eade2232. Lee HJ, Joyce R, Lee J (2022). Liquid polymer/metallic salt-based stretchable strain sensor to evaluate fruit growth. ACS Appl Mater Interfaces 14(4), 5983-5994. Lee WS, Alchanatis V, Yang C, Hirafuji M, Moshou D, Li C (2010). Sensing technologies for precision specialty crop production. Comput Electron Agric 74(1), 2-33. Lew TTS, Koman VB, Gordiichuk P, Park M, Strano MS (2020). The emergence of plant nanobionics and living plants as technology. Adv Mater Technol 5(3), 1900657. Li X, Sun R, Pan J, Shi Z, Lv J, An Z, He Y, Chen Q, Han RPS, Zhang F, Lu Y, Liang H, Liu Q (2023). All-mxene-printed rf resonators as wireless plant wearable sensors for in situ ethylene detection. Small 19(24), 2207889. Li Z, Liu Y, Hossain O, Paul R, Yao S, Wu S, Ristaino JB, Zhu Y, Wei Q (2021). Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor. Matter 4(7), 2553-2570. Liew OW, Chong PCJ, Li B, Asundi AK (2008). Signature optical cues: emerging technologies for monitoring plant health. Sensors (Basel) 8(5), 3205-3239. Lo Presti D, Cimini S, Massaroni C, D Amato R, Caponero MA, De Gara L, Schena E (2021). Plant wearable sensors based on fbg technology for growth and microclimate monitoring. Sensors (Basel) 21(19), 6327. Lu Y, Yang G, Wang S, Zhang Y, Jian Y, He L, Yu T, Luo H, Kong D, Xianyu Y, Liang B, Liu T, Ouyang X, Yu J, Hu X, Yang H, Gu Z, Huang W, Xu K (2024). Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat Electron 7(1), 51-65. Luo Y, Li W, Lin Q, Zhang F, He K, Yang D, Loh XJ, Chen X (2021). A morphable ionic electrode based on thermogel for non-invasive hairy plant electrophysiology. Adv Mater 33(14), 2007848. Maddikunta PKR, Saqib H, Mamoun A, Sweta B, Reddy GT, Khan WZ, Pham Q (2021). Unmanned aerial vehicles in smart agriculture: applications, requirements and challenges. IEEE Sens J 21(16), 17608-17619. Meder F, Saar S, Taccola S, Filippeschi C, Mattoli V, Mazzolai B (2021). Ultraconformable, self-adhering surface electrodes for measuring electrical signals in plants. Adv Mater Technol 6(4), 2001182. Meiliang Zhou, Johan Memelink (2016). Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 34(4), 441-449. Mousavi SAR, Nguyen CT, Farmer EE, Kellenberger S (2014). Measuring surface potential changes on leaves. Nat Protoc 9(8), 1997-2004. Nassar JM, Khan SM, Villalva DR, Nour MM, Almuslem AS, Hussain MM (2018). Compliant plant wearables for localized microclimate and plant growth monitoring. npj Flex Electron 2(1), 1-12. Ochiai T, Tago S, Hayashi M, Fujishima A (2015). Highly sensitive measurement of bio-electric potentials by boron-doped diamond (bdd) electrodes for plant monitoring. Sensors (Basel) 15(10), 26921-26928. Peng B, Liu X, Yao Y, Ping J, Ying Y (2024). A wearable and capacitive sensor for leaf moisture status monitoring. Biosens Bioelectron 245, 115804. Peng B, Wu X, Zhang C, Zhang C, Lan L, Ping J, Ying Y (2023). In-time detection of plant water status change by self-adhesive, water-proof, and gas-permeable electrodes. ACS Appl Mater Interfaces 15(15), 19199-19208. Qu CC, Sun WX, Li Z, Wang XQ, He ZZ(2023). Research progress and prospects of the plant flexible sensors.Trans Chin Soc Agric Eng 39(8),32-43. 渠纯纯, 孙文秀, 李臻, 王喜庆, 何志祝 (2023). 植物柔性传感器研究进展与展望. 农业工程学报 39(8), 32-43. Shin J, Song JW, Flavin MT, Cho S, Li S, Tan A, Pyun KR, Huang AG, Wang H, Jeong S, Madsen KE, Trueb J, Kim M, Nguyen K, Yang A, Hsu Y, Sung W, Lee J, Phyo S, Kim J, Banks A, Chang J, Paller AS, Huang Y, Ameer GA, Rogers JA (2025). A non-contact wearable device for monitoring epidermal molecular flux. Nature 640(8058), 375-383. Smith DM, Allen SJ (1996). Measurement of sap flow in plant stems. J Exp Bot 47(12), 1833-1844. Shi GY, Sang YQ, ZhanG Js, Cai LL, Zhang JX, Meng P, Xue P, Qiao YS (2022). Variation characteristics of plant electrical signal and their relationship with negative air ion under different light intensities. Chin J Appl Ecol 33(2),439-447. 施光耀, 桑玉强, 张劲松, 蔡露露, 张家兴, 孟平, 薛攀, 乔永胜 (2022). 不同光照强度下植物电信号变化特征及其与空气负离子的关系. 应用生态学报33(2),439-447. Tang W, Yan T, Wang F, Yang J, Wu J, Wang J, Yue T, Li Z (2019). Rapid fabrication of wearable carbon nanotube/graphite strain sensor for real-time monitoring of plant growth. Carbon N Y 147, 295-302. Wang L, Zhang Z, Cao J, Zheng W, Zhao Q, Chen W, Xu X, Luo X, Liu Q, Liu X, Xu J, Lu B (2023). Low hysteresis and fatigue-resistant polyvinyl alcohol/activated charcoal hydrogel strain sensor for long-term stable plant growth monitoring. Polymers (Basel) 15(1), 90. Wang S, Chai Y, Sa H, Ye W, Wang Q, Zou Y, Luo X, Xie L, Liu X (2024). Sunflower-like self-sustainable plant-wearable sensing probe. Sci Adv 10(49), eads1136. Wang S, Edupulapati B, Hagel JM, Kwok JJ, Quebedeaux JC, Khasbaatar A, Baek JM, Davies DW, Ella Elangovan K, Wheeler RM, Leakey ADB, Hill CW, Varnavas KA, Diao Y (2024). Highly stretchable, robust, and resilient wearable electronics for remote, autonomous plant growth monitoring. Device 2(4), 100322. Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, Schroeder JI (2022). Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol 23(10), 680-694. Xu H, Zhang G, Wang W, Sun C, Wang H, Wu H, Sun Z (2024). A highly sensitive, low creep hydrogel sensor for plant growth monitoring. Sensors (Basel) 24(19), 6197. Xu W, Chen L, Hu X, Zhang L, Huang D, Li J, Xiong R, Huang C, Zhu M (2024). Botanic signal monitor: advanced wearable sensor for plant health analysis. Adv Mater Technol 34(51), 2410544. Yan H, Wang J, Shi N, Han Y, Zhang S, Zhao G (2024). A flexible and wearable chemiresistive ethylene gas sensor modified with pdnps-swcnts@cu-mof-74 nanocomposite: a targeted strategy for the dynamic monitoring of fruit freshness. Chem Eng J 488, 11. Yin S, Ibrahim H, Schnable PS, Castellano MJ, Dong L (2021). A field-deployable, wearable leaf sensor for continuous monitoring of vapor-pressure deficit. Adv Mater Technol 6(6), 2001246. Yu FH, Cao YL, Xu TY, Guo ZH, Wang DK(2020).Precision fertilization by UAV for rice at tillering stage in cold region based on hyperspectral remote sensing prescription map.Trans Chin Soc Agric Eng 36(15),103-110. 于丰华, 曹英丽, 许童羽, 郭忠辉, 王定康 (2020). 基于高光谱遥感处方图的寒地分蘖期水稻无人机精准施肥. 农业工程学报 36(15), 103-110. Yu HY, Li XK, Yu Y, Wang HJ, Zhang L, Zhang X, Sui YY(2021).Research progress in the application of spectral technology in crop information perception. J Jilin Agric Univ 43(02), 153-162. 于海业, 李晓凯, 于跃, 王洪健, 张蕾, 张昕, 隋媛媛 (2021). 光谱技术在农作物信息感知中的应用研究进展. 吉林农业大学学报 43(02), 153-162. Zhang C, Kong J, Wang Z, Tu C, Li Y, Wu D, Song H, Zhao W, Feng S, Guan Z, Ding B, Chen F (2024). Origami-inspired highly stretchable and breathable 3d wearable sensors for in-situ and online monitoring of plant growth and microclimate. Biosens Bioelectron 259, 116379. Zhang C, Kong J, Wu D, Guan Z, Ding B, Chen F (2023). Wearable sensor: an emerging data collection tool for plant phenotyping. Plant Phenomics 5, 51. Zhang C, Zhang C, Wu X, Ping J, Ying Y (2022). An integrated and robust plant pulse monitoring system based on biomimetic wearable sensor. npj Flex Electron 6(1), 1-9. Zhang HC, Zhou HP, Zheng JQ, Ge YF, Li YX(2020).Research progress and prospect in plant phenotyping platform and image analysis technology.Trans Chin Soc Agric Mach 51(3),1-17. 张慧春, 周宏平, 郑加强, 葛玉峰, 李杨先 (2020). 植物表型平台与图像分析技术研究进展与展望. 农业机械学报 51(3), 1-17. Zhao CJ(2014). Advances of research and application in remote sensing for agriculture.Trans Chin Soc Agric Mach 45(12),277-293. 赵春江 (2014). 农业遥感研究与应用进展. 农业机械学报 45(12), 277-293. Zhao CJ(2021).Current situations and prospects of smart agriculture. J South China Agric Univ 42(06), 1-7. 赵春江 (2021). 智慧农业的发展现状与未来展望. 华南农业大学学报 42(06), 1-7. Zheng C, Zhou Q, Wang J, Du D (2023). Wireless plant stresses monitoring with a wearable chemiresistor gas sensor at room temperature. Sens Actuators B Che 381, 133408. |
[1] | 张长青 王进 李广平 章镇. 园艺植物分子育种相关生物信息资源及其应用[J]. 植物学报, 2005, 22(04): 494-501. |
[2] | 吴国良孙建平冀爱青 张燕. 园艺植物细胞的超微结构研究[J]. 植物学报, 2003, 20(06): 688-695. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||