植物学报 ›› 2023, Vol. 58 ›› Issue (4): 573-589.DOI: 10.11983/CBB23006
毛轩雯1, 王志超1, 阮心依1, 孙靖菲1, 张雅婷1, 陆锦灏1, 邵甜甜1, 王娴1, 肖佳敏1, 肖莉1, 叶梦瑶1, 吴玉环2,3, 刘鹏1()
收稿日期:
2023-01-15
接受日期:
2023-03-08
出版日期:
2023-07-01
发布日期:
2023-03-10
通讯作者:
*E-mail: sky79@zjnu.cn
基金资助:
Xuanwen Mao1, Zhichao Wang1, Xinyi Ruan1, Jingfei Sun1, Yating Zhang1, Jinhao Lu1, Tiantian Shao1, Xian Wang1, Jiamin Xiao1, Li Xiao1, Mengyao Ye1, Yuhuan Wu2,3, Peng Liu1()
Received:
2023-01-15
Accepted:
2023-03-08
Online:
2023-07-01
Published:
2023-03-10
Contact:
*E-mail: sky79@zjnu.cn
摘要: 铝(Al)是酸性土壤常见的金属污染物之一。为探明外源有机酸对铝胁迫下菊芋(Helianthus tuberosus)生理特征及根系DNA损伤的影响, 以耐铝品种徐州菊芋和铝敏感品种资阳菊芋为材料, 设置0、350和700 µmol∙L-1铝处理, 同时分别施加0、30、60和90 µmol∙L-1复合有机酸, 探究外源有机酸对铝胁迫下各时期(7、14和21天)菊芋生理响应和DNA损伤的影响。结果表明, 铝胁迫抑制菊芋根伸长与根系活力, 严重损害菊芋的光合机构与抗氧化系统, 随着铝浓度的增加, DNA拖尾程度升高, DNA受损加剧。而施加复合有机酸能有效缓解铝胁迫造成的损伤。施加60 µmol∙L-1有机酸可增强抗氧化酶活性, 提高最大光化学效率并促进根尖有机酸分泌, 其中柠檬酸分泌量分别比对照高2倍(徐州菊芋)及0.75倍(资阳菊芋), 根尖铝含量降低, 根系活力增强, 徐州菊芋和资阳菊芋DNA尾距较单独铝处理组下降51.53%和35.10%, 显著缓解DNA拖尾现象, 较大程度修复了DNA断裂。综上, 铝胁迫对菊芋造成的损害严重且较难缓解, 60 µmol∙L-1有机酸能增强低铝胁迫下菊芋生理响应, 降低DNA受损程度, 提高菊芋的抗逆性, 且在铝敏感品种资阳菊芋中缓解效果更好。该研究揭示了外源复合有机酸对铝胁迫下菊芋生理响应系统的调控作用, 可为菊芋等经济作物在南方酸铝地区的种植与生产提供理论依据。
毛轩雯, 王志超, 阮心依, 孙靖菲, 张雅婷, 陆锦灏, 邵甜甜, 王娴, 肖佳敏, 肖莉, 叶梦瑶, 吴玉环, 刘鹏. 外源有机酸对铝胁迫下菊芋生理响应系统的调控效应. 植物学报, 2023, 58(4): 573-589.
Xuanwen Mao, Zhichao Wang, Xinyi Ruan, Jingfei Sun, Yating Zhang, Jinhao Lu, Tiantian Shao, Xian Wang, Jiamin Xiao, Li Xiao, Mengyao Ye, Yuhuan Wu, Peng Liu. Regulatory Effects of Exogenous Organic Acids on the Physiological Responses of Helianthus tuberosus Under Aluminium Stress. Chinese Bulletin of Botany, 2023, 58(4): 573-589.
Group | Aluminium concentration (μmol?L-1) | Compound organic acid (OA) concentration (μmol?L-1) |
---|---|---|
1 | 0 | 0 |
2 | 0 | 30 |
3 | 0 | 60 |
4 | 0 | 90 |
5 | 350 | 0 |
6 | 350 | 30 |
7 | 350 | 60 |
8 | 350 | 90 |
9 | 700 | 0 |
10 | 700 | 30 |
11 | 700 | 60 |
12 | 700 | 90 |
表1 实验设计
Table 1 Experimental design in this study
Group | Aluminium concentration (μmol?L-1) | Compound organic acid (OA) concentration (μmol?L-1) |
---|---|---|
1 | 0 | 0 |
2 | 0 | 30 |
3 | 0 | 60 |
4 | 0 | 90 |
5 | 350 | 0 |
6 | 350 | 30 |
7 | 350 | 60 |
8 | 350 | 90 |
9 | 700 | 0 |
10 | 700 | 30 |
11 | 700 | 60 |
12 | 700 | 90 |
图1 外源复合有机酸(OA)对铝胁迫下菊芋根长与株高的影响 Al0、Al350和Al700表示铝浓度分别为0、350和700 μmol?L-1; OA0、OA30、OA60和OA90表示复合有机酸浓度分别为0、30、60和90 μmol?L-1。XZ: 徐州菊芋; ZY: 资阳菊芋。不同小写字母表示同一时期不同处理组间差异显著(P<0.05)。
Figure 1 The effect of exogenous compound organic acid (OA) on the root length and plant height of Helianthus tuberosus under aluminum (Al) stress Al0, Al350, and Al700 indicating concentrations of Al are 0, 350, and 700 μmol?L-1, respectively; OA0, OA30, OA60, and OA90 indicating concentrations of OA are 0, 30, 60, and 90 μmol?L-1, respectively. XZ: H. tuberosus cv. ‘Xuzhou’; ZY: H. tuberosus cv. ‘Ziyang’. Different lowercase letters indicate significant differences among treatment groups at the same period (P<0.05).
图2 外源复合有机酸(OA)对铝胁迫下菊芋叶片气孔导度(Gs) (A, E)、蒸腾速率(Tr) (B, F)、净光合速率(Pn) (C, G)和细胞间CO2浓度(Ci) (D, H)的影响 Al0、Al350、Al700、OA0、OA30、OA60和OA90同图1。XZ和ZY同图1。不同小写字母表示同一时期不同处理组间差异显著(P<0.05)。
Figure 2 The effect of exogenous compound organic acid (OA) on the stomatal conductance (Gs) (A, E), transpiration rate (Tr) (B, F), net photosynthetic rate (Pn) (C, G), and intercellular CO2 concentration (Ci) (D, H) of Helianthus tuberosus leaves under aluminum (Al) stress Al0, Al350, Al700, OA0, OA30, OA60, and OA90 are the same as shown in Figure 1. XZ and ZY are the same as shown in Figure 1. Different lowercase letters indicate significant differences among different treatment groups at the same period (P<0.05).
图3 外源复合有机酸(OA)对铝胁迫下菊芋叶片初始荧光(F0) (A, D)、非光化学猝灭系数(qN) (B, E)和最大荧光(Fm) (C, F)的影响 Al0、Al350、Al700、OA0、OA30、OA60和OA90同图1。XZ和ZY同图1。不同小写字母表示同一时期不同处理组间差异显著(P<0.05)。
Figure 3 The effect of exogenous compound organic acid (OA) on the initial fluorescence (F0) (A, D), non-photochemical quenching (qN) (B, E) and maximal fluorescence (Fm) (C, F) of Helianthus tuberosus leaves under aluminum (Al) stress Al0, Al350, Al700, OA0, OA30, OA60, and OA90 are the same as shown in Figure 1. XZ and ZY are the same as shown in Figure 1. Different lowercase letters indicate significant differences among different treatment groups at the same period (P<0.05).
图4 外源复合有机酸(OA)对铝胁迫下菊芋叶片电子传递效率(ETR) (A, C)和PSII最大光化学量子产量(Fv/Fm) (B, D)的影响 Al0、Al350、Al700、OA0、OA30、OA60和OA90同图1。XZ和ZY同图1。不同小写字母表示同一时期不同处理组间差异显著(P<0.05)。
Figure 4 The effect of exogenous compound organic acid (OA) on the electron transport rate (ETR) (A, C) and maximum photochemical quantum yield of PSII (Fv/Fm) (B, D) of Helianthus tuberosus leaves under aluminum (Al) stress Al0, Al350, Al700, OA0, OA30, OA60, and OA90 are the same as shown in Figure 1. XZ and ZY are the same as shown in Figure 1. Different lowercase letters indicate significant differences among different treatment groups at the same period (P<0.05).
图5 外源复合有机酸(OA)对铝胁迫下菊芋叶片超氧化物歧化酶(SOD) (A, D)、过氧化物酶(POD) (B, E)和过氧化氢酶(CAT) (C, F)活性的影响 Al0、Al350、Al700、OA0、OA30、OA60和OA90同图1。XZ和ZY同图1。不同小写字母表示同一时期不同处理组间差异显著(P<0.05)。
Figure 5 The effect of exogenous compound organic acid (OA) on the superoxide dismutase (SOD) (A, D), peroxidase (POD) (B, E) and catalase (CAT) (C, F) activities of Helianthus tuberosus leaves under aluminum (Al) stress Al0, Al350, Al700, OA0, OA30, OA60, and OA90 are the same as shown in Figure 1. XZ and ZY are the same as shown in Figure 1. Different lowercase letters indicate significant differences among different treatment groups at the same period (P<0.05).
图6 外源复合有机酸(OA)对铝胁迫下菊芋叶片抗坏血酸(AsA) (A, C)和谷胱甘肽(GSH) (B, D)含量的影响 Al0、Al350、Al700、OA0、OA30、OA60和OA90同图1。XZ和ZY同图1。不同小写字母表示同一时期不同处理组间差异显著(P<0.05)。
Figure 6 The effect of exogenous compound organic acid (OA) on the ascorbic acid (AsA) (A, C) and glutathione (GSH) (B, D) contents of Helianthus tuberosus leaves under aluminum (Al) stress Al0, Al350, Al700, OA0, OA30, OA60, and OA90 are the same as shown in Figure 1. XZ and ZY are the same as shown in Figure 1. Different lowercase letters indicate significant differences among different treatment groups at the same period (P<0.05).
图7 外源复合有机酸(OA)对铝胁迫下菊芋根尖铝含量与根系活力的影响 Al0、Al350、Al700、OA0、OA30、OA60和OA90同图1。XZ和ZY同图1。不同小写字母和*表示同一时期不同处理组间差异显著(P<0.05)。
Figure 7 Effect of exogenous compound organic acid (OA) on the aluminum (Al) content of root tip and root activity of Helianthus tuberosus under aluminum stress Al0, Al350, Al700, OA0, OA30, OA60, and OA90 are the same as shown in Figure 1. XZ and ZY are the same as shown in Figure 1. Different lowercase letters and * indicate significant differences among different treatment groups at the same period (P<0.05).
图8 外源复合有机酸(OA)对铝胁迫下菊芋根系分泌物柠檬酸(CA) (A)、苹果酸(MA) (B)和草酸(EA) (C)含量的影响 Al0、Al350、Al700、OA0、OA30、OA60和OA90同图1。XZ和ZY同图1。不同小写字母表示同一时期不同处理组间差异显著(P<0.05)。
Figure 8 The effect of exogenous compound organic acid (OA) on the content of citric acid (CA) (A), malic acid (MA) (B) and ethanedioic acid (EA) (C) in root exudates of Helianthus tuberosus under aluminum (Al) stress Al0, Al350, Al700, OA0, OA30, OA60, and OA90 are the same as shown in Figure 1. XZ and ZY are the same as shown in Figure 1. Different lowercase letters indicate significant differences among different treatment groups at the same period (P<0.05).
图9 外源复合有机酸(OA)对铝胁迫下菊芋根细胞Olive尾矩(OTM)的影响 Al0、Al350、Al700、OA0、OA30、OA60和OA90同图1。XZ和ZY同图1。*表示同一时期不同处理组间差异显著(P<0.05)。
Figure 9 The effect of exogenous compound organic acid (OA) on oliver tail moment (OTM) of root cells of Helianthus tuberosus under aluminum (Al) stress Al0, Al350, Al700, OA0, OA30, OA60, and OA90 are the same as shown in Figure 1. XZ and ZY are the same as shown in Figure 1. * indicate significant differences among different treatment groups at the same period (P<0.05).
图10 不同浓度复合有机酸(OA)及铝处理下菊芋根系DNA损伤 Al0、Al350、Al700、OA0、OA30、OA60和OA90同图1。Bars=20 μm
Figure 10 DNA damage of Helianthus tuberosus root under different concentration of compound organic acid (OA) and aluminum (Al) treatments Al0, Al350, Al700, OA0, OA30, OA60, and OA90 are the same as shown in Figure 1. Bars=20 μm
[1] | 曹林, 吴玉环, 章艺, 郭怡, 肖有铁, 郦枫, 马丽, 徐根娣, 刘鹏 (2015). 外源水杨酸对铝胁迫下菊芋光合特性及耐铝性的影响. 水土保持学报 29, 260-266. |
[2] | 陈昌, 宋颖华, 高晓强 (2010). 干法消解与湿法消解测定紫菜中铝含量. 食品安全质量检测学报 27(3), 118-123. |
[3] | 程晓晴, 方婷玉, 李凤杰, 安渊, 周鹏 (2020). 喷施水杨酸对铝胁迫紫花苜蓿幼苗光合作用和光化学系统的影响. 中国草地学报 42(4), 42-49. |
[4] | 邓晓霞, 李月明, 姚堃姝, 乔婧文, 王竞红, 蔺吉祥 (2022). 植物适应酸铝胁迫机理的研究进展. 生物工程学报 38, 2754-2766. |
[5] | 郜红建, 常江, 张自立, 丁士明, 魏俊岭 (2003). 研究植物根系分泌物的方法. 植物生理学通讯 39, 56-60. |
[6] |
郭书亚, 艾金祥, 陈虹宇, 邵烨瑶, 汪妍, 王倩, 叶怡彤, 张雅婷, 丁哲晓, 吴昊辰, 吴玉环, 张建新, 饶米德, 刘鹏 (2022). 基于主成分-聚类-逐步回归分析构建番茄苗期耐铝性综合评价体系. 植物学报 57, 479-489.
DOI |
[7] | 郭炜 (2008). 紫外辐照导致植物细胞DNA损伤的彗星电泳检测及生理指标的测定. 硕士论文. 济南: 山东大学. pp. 1-89. |
[8] | 胡文海, 胡雪华, 闫小红, 周升团 (2021). 低温胁迫及恢复对番茄快速叶绿素荧光诱导动力学特征的影响. 中国农业气象 42, 859-869. |
[9] |
胡文海, 叶子飘, 闫小红, 杨旭升 (2017). 越冬期广玉兰阳生叶和阴生叶PSII功能及捕光色素分子内禀特性的比较研究. 植物研究 37, 281-287.
DOI |
[10] | 李合生 (2000). 植物生理生化实验原理和技术. 北京: 高等教育出版社. pp. 195-197. |
[11] | 李青容, 陈建军, 祖艳群, 何永美, 湛方栋, 李博, 李元 (2022). 酸性农田土壤改良效果综合评价指标体系的构建及验证. 农业环境科学学报 41, 547-558. |
[12] |
刘晓龙, 季平, 杨洪涛, 丁永电, 付佳玲, 梁江霞, 余聪聪 (2022). 脱落酸对水稻抽穗开花期高温胁迫的诱抗效应. 植物学报 57, 596-610.
DOI |
[13] | 钱莲文, 李清彪, 孙境蔚, 冯莹 (2018). 铝胁迫下常绿杨根系有机酸和氨基酸的分泌. 厦门大学学报(自然科学版) 57, 221-227. |
[14] | 沈仁芳, 赵学强 (2019). 酸性土壤可持续利用. 农学学报 9(3), 16-20. |
[15] | 孙琴, 倪吾钟, 杨肖娥 (2002). 有机酸在植物解铝毒中的作用及生理机制. 植物学通报 19, 496-503. |
[16] | 唐宏亮, 申建波, 张福锁, Rengel Z (2013). 磷和外源生长素对白羽扇豆(Lupinus albus L.)根形态和生理特性的影响. 中国科学: 生命科学 43, 201-212. |
[17] |
王浩, 王明, 梁婷, 姚玉新, 杜远鹏, 高振 (2022). 气温和根区温度对葡萄叶片光合荧光特性的影响. 植物学报 57, 209-216.
DOI |
[18] | 王亚校, 王子岚, 孙然, 杜克久 (2019). Aroclor1242暴露对荻组培苗不定根分化的影响. 林业与生态科学 34, 308-313. |
[19] |
魏志琴, 陈志勇, 秦蓉, 王宇涛, 李韶山 (2013). Cu2+对拟南芥根的局部毒性及诱导DNA损伤和细胞死亡. 植物学报 48, 303-312.
DOI |
[20] |
伍自力, 余孟瑶, 陈露, 魏静, 王晓琴, 胡勇, 闫妍, 万平 (2015). 小立碗藓对重金属镉胁迫的应答特征. 植物学报 50, 171-179.
DOI |
[21] |
熊洁, 丁戈, 李书宇, 陈伦林, 宋来强 (2020). 铝胁迫对不同耐铝油菜品种苗期生长发育和养分吸收的影响. 华北农学报 35(6), 165-171.
DOI |
[22] |
许馨露, 李丹丹, 马元丹, 翟建云, 孙建飞, 高岩, 张汝民 (2018). 四季桂抗氧化防御系统对干旱、高温及协同胁迫的响应. 植物学报 53, 72-81.
DOI |
[23] | 余倩, 段雷, 郝吉明 (2021). 中国酸沉降: 来源、影响与控制. 环境科学学报 41, 731-746. |
[24] | 张婷婷, 刘子凡, 安锋, 谢贵水 (2020). 铝胁迫造成橡胶苗死亡的机制研究. 热带作物学报 41, 2439-2445. |
[25] |
张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏 (2021). 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响. 作物学报 47, 2490-2500.
DOI |
[26] | 郑开敏, 肖家昶, 马俊英, 贺茂林, 格桑, 郑阳霞 (2022). 柠檬酸对铝胁迫下豆瓣菜生长及生理的影响. 江苏农业学报 38, 476-485. |
[27] | 周谷, 李秧秧, 樊军 (2023). 利用植物气体交换参数确定萎蔫系数的方法. 土壤学报 60, 776-786. |
[28] | 周蜜, 吴玉环, 刘星星, 陈娇, 郑婷, 章嗣瑶, 李江雯, 李润桥, 刘鹏 (2019). 镉胁迫对菊芋生理变化及镉富集的影响. 水土保持学报 33, 323-330. |
[29] | 周小华, 李昆志, 赵峥, 张小玲, 程霞, 冯庆 (2021). 外源抗坏血酸对水稻抗铝生理指标的影响. 热带作物学报 42, 769-776. |
[30] |
Alasfar RH, Isaifan RJ (2021). Aluminum environmental pollution: the silent killer. Environ Sci Pollut Res Int 28, 44587-44597.
DOI |
[31] |
Chen ZC, Liao H (2016). Organic acid anions: an effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils. J Genet Genomics 43, 631-638.
DOI PMID |
[32] |
Diarra I, Kotra KK, Prasad S (2022). Application of phytoremediation for heavy metal contaminated sites in the South Pacific: strategies, current challenges and future prospects. Appl Spectrosc Rev 57, 490-512.
DOI URL |
[33] |
Dos Reis AR, Lisboa LAM, Reis HPG, De Queiroz Barcelos JP, Santos EF, Santini JMK, Meyer-Sand BRV, Putti FF, Galindo FS, Kaneko FH, Barbosa JZ, Paixão AP, Junior EF, De Figueiredo PAM, Lavres J (2018). Depicting the physiological and ultrastructural responses of soybean plants to Al stress conditions. Plant Physiol Biochem 130, 377-390.
DOI URL |
[34] |
Guo MX, Zhang XT, Liu JJ, Hou LL, Liu HX, Zhao XS (2020). OsProDH negatively regulates thermotolerance in rice by modulating proline metabolism and reactive oxygen species scavenging. Rice 13, 61.
DOI |
[35] |
Guo P, Qi YP, Cai YT, Yang TY, Yang LT, Huang ZR, Chen LS (2018). Aluminum effects on photosynthesis, reactive oxygen species and methylglyoxal detoxification in two Citrus species differing in aluminum tolerance. Tree Physiol 38, 1548-1565.
DOI URL |
[36] |
Hartmann H, Link RM, Schuldt B (2021). A whole-plant perspective of isohydry: stem-level support for leaf-level plant water regulation. Tree Physiol 41, 901-905.
DOI PMID |
[37] |
Igamberdiev AU, Bykova NV (2018). Role of organic acids in the integration of cellular redox metabolism and mediation of redox signaling in photosynthetic tissues of higher plants. Free Radical Biol Med 122, 74-85.
DOI URL |
[38] |
Jaskulak M, Grobelak A, Grosser A, Vandenbulcke F (2019). Gene expression, DNA damage and other stress markers in Sinapis alba L. exposed to heavy metals with special reference to sewage sludge application on contaminated sites. Ecotoxicol Environ Saf 181, 508-517.
DOI URL |
[39] | Koppen G, Verschaeve L (1996). The alkaline comet test on plant cells: a new genotoxicity test for DNA strand breaks in Vicia faba root cells. Mutat Res 360, 193-200. |
[40] |
Liu WJ, Xu FJ, Lv T, Zhou WW, Chen Y, Jin CW, Li LL, Lin XY (2018). Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L.) plants. Sci Total Environ 627, 462-469.
DOI URL |
[41] |
Luo J, Qi SH, Gu XWS, Wang JL, Xie XM (2016). An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems. Ecotoxicology 25, 646-654.
DOI PMID |
[42] |
Park YM, Yeon KM, Park CH (2020). Silica treatment technologies in reverse osmosis for industrial desalination: a review. Environ Eng Res 25, 819-829.
DOI URL |
[43] | Pattanayak A, Pfukrei K (2013). Aluminium toxicity tolerance in crop plants: present status of research. Afr J Biotechnol 12, 3752-3757. |
[44] |
Pimenta LS, Mariano EDA, Gazaffi R, Carneiro MS (2020). Crescimento radicular e resposta de enzimas antioxidantes ao estresse por alumínio em cana-de-açúcar. Semina: Ciências Agrárias 41(Supl),3449-3456.
DOI URL |
[45] |
Rahman R, Upadhyaya H (2021). Aluminium toxicity and its tolerance in plant: a review. J Plant Biol 64, 101-121.
DOI |
[46] |
Rao LY, Li SY, Cui X (2021). Leaf morphology and chlorophyll fluorescence characteristics of mulberry seedlings under waterlogging stress. Sci Rep 11, 13379.
DOI PMID |
[47] |
Riaz M, Yan L, Wu XW, Hussain S, Aziz O, Jiang CC (2018). Mechanisms of organic acids and boron induced tolerance of aluminum toxicity: a review. Ecotoxicol Environ Saf 165, 25-35.
DOI URL |
[48] |
Singh S, Tripathi DK, Singh S, Sharma S, Dubey NK, Chauhan DK, Vaculík M (2017). Toxicity of aluminium on various levels of plant cells and organism: a review. Environ Exp Bot 137, 177-193.
DOI URL |
[49] |
Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017). Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110, 70-81.
DOI URL |
[50] |
Wu WQ, Ueda H, Löbmann K, Rades T, Grohganz H (2018). Organic acids as co-formers for co-amorphous systems—influence of variation in molar ratio on the physicochemical properties of the co-amorphous systems. Eur J Pharm Biopharm 131, 25-32.
DOI URL |
[51] |
Yang Y, Ma L, Zeng H, Chen LY, Zheng Y, Li CX, Yang ZP, Wu N, Mu X, Dai CY, Guan HL, Cui XM, Liu Y (2018). iTRAQ-based proteomics screen for potential regulators of wheat (Triticum aestivum L.) root cell wall component response to Al stress. Gene 675, 301-311.
DOI PMID |
[52] |
Yun T, An F, Li WZ, Sun Y, Cao L, Xue LF (2016). A novel approach for retrieving tree leaf area from ground-based LiDAR. Remote Sens 8, 942.
DOI URL |
[53] |
Zhou Y, Liu ZY, Yao MD, Chen J, Xiao YN, Han GY, Shen JR, Wang FJ (2022). Elucidating the molecular mechanism of dynamic photodamage of photosystem II membrane protein complex by integrated proteomics strategy. CCS Chem 4, 182-193.
DOI URL |
[1] | 郭书亚, 艾金祥, 陈虹宇, 邵烨瑶, 汪妍, 王倩, 叶怡彤, 张雅婷, 丁哲晓, 吴昊辰, 吴玉环, 张建新, 饶米德, 刘鹏. 基于主成分-聚类-逐步回归分析构建番茄苗期耐铝性综合评价体系[J]. 植物学报, 2022, 57(4): 479-489. |
[2] | 艾金祥, 宋嘉怡, 严浙楠, 王志超, 陈文倩, 吴玉环, 王燕燕, 潘蕾蕾, 许俞韬, 刘鹏. 褪黑素对铅胁迫下虎舌红和朱砂根生理响应及DNA损伤的调控效应[J]. 植物学报, 2022, 57(2): 171-181. |
[3] | 陈成, 董爱武, 苏伟. 拟南芥组蛋白分子伴侣AtHIRA参与体细胞同源重组及盐胁迫响应[J]. 植物学报, 2018, 53(1): 42-50. |
[4] | 赵哈林, 曲浩, 周瑞莲, 李瑾, 潘成臣, 王进. 沙埋对两种沙生植物幼苗生长的影响及其生理响应差异[J]. 植物生态学报, 2013, 37(9): 830-838. |
[5] | 吕晋慧,任磊,李艳锋,王玄,赵夏陆,张春来. 不同基因型茶菊对盐胁迫的响应[J]. 植物生态学报, 2013, 37(7): 656-664. |
[6] | 王海翠, 胡林林, 李敏, 陈为峰, 王莹, 周佳佳. 多环芳烃(PAHs)对油菜生长的影响及其积累效应[J]. 植物生态学报, 2013, 37(12): 1123-1131. |
[7] | 王奇峰;易琼;李昆志;陈丽梅;玉永雄. 铝胁迫下柱花草SSH文库构建及表达序列标签分析[J]. 植物学报, 2010, 45(06): 679-688. |
[8] | 宁建凤;郑青松;邹献中;孙丽丽;姚瑶;陈勇;巫金龙;魏岚. 罗布麻对不同浓度盐胁迫的生理响应[J]. 植物学报, 2010, 45(06): 689-697. |
[9] | 李扬, 黄建辉. 库布齐沙漠中甘草对不同水分和养分供应的光合生理响应[J]. 植物生态学报, 2009, 33(6): 1112-1124. |
[10] | 刘滨扬, 刘蔚秋, 雷纯义, 张以顺. 三种苔藓植物对模拟N沉降的生理响应[J]. 植物生态学报, 2009, 33(1): 141-149. |
[11] | 聂志刚;王艳;李韶山. 重金属诱导拟南芥原生质体DNA 损伤的单细胞凝胶电泳检测[J]. 植物学报, 2009, 44(01): 117-123. |
[12] | 薛延丰, 刘兆普. 不同浓度NaCl和Na2CO3处理对菊芋幼苗光合及叶绿素荧光的影响[J]. 植物生态学报, 2008, 32(1): 161-167. |
[13] | 王静 蒋磊 王艳 李韶山. 紫外辐射诱导植物叶片DNA损伤敏感性差异[J]. 植物学报, 2007, 24(02): 189-193. |
[14] | 隆小华, 刘兆普, 蒋云芳, 陈铭达, 王琳. 海水处理对不同产地菊芋幼苗光合作用及叶绿素荧光特性的影响[J]. 植物生态学报, 2006, 30(5): 827-834. |
[15] | 隆小华, 刘兆普, 徐文君. 海水处理下菊芋幼苗生理生化特性及磷效应的研究[J]. 植物生态学报, 2006, 30(2): 307-313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||