植物学报 ›› 2020, Vol. 55 ›› Issue (6): 768-776.DOI: 10.11983/CBB20098
收稿日期:
2020-05-26
接受日期:
2020-09-03
出版日期:
2020-11-01
发布日期:
2020-11-11
通讯作者:
王益军
作者简介:
*E-mail: wyj@yzu.edu.cn基金资助:
Yijun Wang1,2,*(), Yali Wang1,2, Yudong Chen1,2
Received:
2020-05-26
Accepted:
2020-09-03
Online:
2020-11-01
Published:
2020-11-11
Contact:
Yijun Wang
摘要:
转座子是基因组的重要组分, 影响基因组的结构与稳定。长链非编码RNA (lncRNA)在转录及转录后水平调控多个生物学过程。转座子与lncRNA是物种进化的重要驱动力。含有转座子序列的lncRNA在自然界广泛存在。该文对植物lncRNA的发掘策略和功能研究进行概述, 围绕植物转座子来源lncRNA (TE-lncRNA)的分布和功能展开综述, 并对植物TE-lncRNA的调控机制、表观修饰及育种潜势等进行探讨与展望。
王益军, 王亚丽, 陈煜东. 转座子来源的植物长链非编码RNA. 植物学报, 2020, 55(6): 768-776.
Yijun Wang, Yali Wang, Yudong Chen. Transposon-derived Long Noncoding RNA in Plants. Chinese Bulletin of Botany, 2020, 55(6): 768-776.
图1 拟南芥和玉米基因组中转座子的分布(数据来源: The Arabidopsis Genome Initiative, 2000; Schnable et al., 2009) (A) 拟南芥基因组中转座子分布(左图)和拟南芥长末端重复序列(LTR)逆转座子占全部转座子的比例(右图); (B) 玉米基因组中转座子分布(左图)和玉米LTR逆转座子占全部转座子的比例(右图)。Class I: 逆转座子; Class II: DNA转座子
Figure 1 Transposon composition in the genomes of Arabidopsis and maize (data source: The Arabidopsis Genome Initiative, 2000; Schnable et al., 2009) (A) Transposon composition in Arabidopsis genome (left) and the proportion of Arabidopsis long terminal repeat (LTR) retrotransposons (right); (B) Transposon composition in maize genome (left) and the proportion of maize LTR retrotransposons (right). Class I: Retrotransposons; Class II: DNA trotransposons
物种 | lncRNA ID | lncRNA调控通路 | 参考文献 |
---|---|---|---|
拟南芥 | COLDAIR (COLD ASSISTED INTRONIC NONCODING RNA) | 成花转变 | |
COOLAIR (cold induced long antisense intragenic RNA) | 成花转变 | ||
DRIR (DROUGHT INDUCED lncRNA) | 干旱和盐胁迫应答 | ||
ELENA1 (ELF18-INDUCED LONG-NONCODING RNA1) | 先天免疫反应 | ||
MAS (lncRNA from MADS AFFECTING FLOWERING4) | 春化响应 | ||
T5120 | NO3-同化 | ||
TE-lincRNA11195* | ABA响应 | ||
水稻 | ALEX1 (An Leaf Expressed and Xoo-induced lncRNA 1) | 白叶枯病抗性 | |
Ef-cd (Early flowering-completely dominant) | 开花期和产量 | ||
LAIR (LRK Antisense Intergenic RNA) | 产量 | ||
TL (TWISTED LEAF) | 叶片发育 | ||
玉米 | PILNCR1 (Pi-deficiency-induced long non-coding RNA 1) | 磷胁迫应答 | |
棉花 | XLOC_409583* | 苗高 | |
番茄 | lncRNA-314* | 果实成熟 | |
lncRNA16397 | 晚疫病抗性 | ||
lncRNA39026 | 晚疫病抗性 |
表1 植物长链非编码RNA (lncRNA)功能
Table 1 Function of plant long noncoding RNA (lncRNA)
物种 | lncRNA ID | lncRNA调控通路 | 参考文献 |
---|---|---|---|
拟南芥 | COLDAIR (COLD ASSISTED INTRONIC NONCODING RNA) | 成花转变 | |
COOLAIR (cold induced long antisense intragenic RNA) | 成花转变 | ||
DRIR (DROUGHT INDUCED lncRNA) | 干旱和盐胁迫应答 | ||
ELENA1 (ELF18-INDUCED LONG-NONCODING RNA1) | 先天免疫反应 | ||
MAS (lncRNA from MADS AFFECTING FLOWERING4) | 春化响应 | ||
T5120 | NO3-同化 | ||
TE-lincRNA11195* | ABA响应 | ||
水稻 | ALEX1 (An Leaf Expressed and Xoo-induced lncRNA 1) | 白叶枯病抗性 | |
Ef-cd (Early flowering-completely dominant) | 开花期和产量 | ||
LAIR (LRK Antisense Intergenic RNA) | 产量 | ||
TL (TWISTED LEAF) | 叶片发育 | ||
玉米 | PILNCR1 (Pi-deficiency-induced long non-coding RNA 1) | 磷胁迫应答 | |
棉花 | XLOC_409583* | 苗高 | |
番茄 | lncRNA-314* | 果实成熟 | |
lncRNA16397 | 晚疫病抗性 | ||
lncRNA39026 | 晚疫病抗性 |
图2 植物中转座子来源的基因间长链非编码RNA (TE-lincRNA)占全部lincRNA的比例(数据来源: Wang et al., 2017; Golicz et al., 2018)
Figure 2 The proportion of plant transposable element-de- rived long intergenic noncoding RNA (TE-lincRNA) (data source: Wang et al., 2017; Golicz et al., 2018)
[1] | 张楠, 刘自广, 孙世臣, 刘圣怡, 林建辉, 彭疑芳, 张晓旭, 杨贺, 岑曦, 吴娟 (2020). 拟南芥AtR8 lncRNA对盐胁迫响应及其对种子萌发的调节作用. 植物学报 55, 421-429. |
[2] | 张硕, 吴昌银 (2019). 长链非编码RNA基因Ef-cd调控水稻早熟与稳产. 植物学报 54, 550-553. |
[3] |
Alonge M, Wang XG, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D, Levy Y, Harel TH, Shalev-Schlosser G, Amsellem Z, Razifard H, Caicedo AL, Tieman DM, Klee H, Kirsche M, Aganezov S, Ranallo-Benavidez TR, Lemmon ZH, Kim J, Robitaille G, Kramer M, Goodwin S, McCombie WR, Hutton S, Van Eck J, Gillis J, Eshed Y, Sedlazeck FJ, van der Knaap E, Schatz MC, Lippman ZB (2020). Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182, 145-161.
URL PMID |
[4] |
Axtell MJ (2013). Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64, 137-159.
URL PMID |
[5] | Barnes C, Kanhere A(2016). Identification of RNA-protein interactions through in vitro RNA pull-down assays. In: Lanzuolo C, Bodega B, eds. Polycomb Group Proteins. Methods in Molecular Biology, Vol. 480. New York: Humana Press. pp. 99-113. |
[6] |
Bunkers G, Nelson OE Jr, Raboy V (1993). Maize bronze 1:dSpm insertion mutations that are not fully suppressed by an active Spm Genetics 134, 1211-1220.
URL PMID |
[7] |
Cong CS, Li YB (2020). Progress on Mutator superfamily. Hereditas 42, 131-144.
DOI URL PMID |
[8] |
Cui J, Luan YS, Jiang N, Bao H, Meng J (2017). Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. Plant J 89, 577-589.
URL PMID |
[9] |
Deniz Ö, Frost JM, Branco MR (2019). Regulation of transposable elements by DNA modifications. Nat Rev Genet 20, 417-431.
DOI URL PMID |
[10] |
Dooner HK, Belachew A (1991). Chromosome breakage by pairs of closely linked transposable elements of the Ac-Ds family in maize. Genetics 129, 855-862.
URL PMID |
[11] |
Du QG, Wang K, Zou C, Xu C, Li WX (2018). The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize. Plant Physiol 177, 1743-1753.
URL PMID |
[12] |
Fang J, Zhang FT, Wang HR, Wang W, Zhao F, Li ZJ, Sun CH, Chen FM, Xu F, Chang SQ, Wu L, Bu QY, Wang PR, Xie JK, Chen F, Huang XH, Zhang YJ, Zhu XG, Han B, Deng XJ, Chu CC (2019). Ef-cd locus shortens rice maturity duration without yield penalty. Proc Natl Acad Sci USA 116, 18717-18722.
URL PMID |
[13] |
Feschotte C, Jiang N, Wessler SR (2002). Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3, 329-341.
DOI URL PMID |
[14] | Gagliardi M, Matarazzo MR (2016). RIP: RNA immunoprecipitation. In: Lanzuolo C, Bodega B, eds. Polycomb Group Proteins. Methods in Molecular Biology, Vol. 1480. New York: Humana Press.pp. 73-86. |
[15] |
Golicz AA, Singh MB, Bhalla PL (2018). The long intergenic noncoding RNA (lincRNA) landscape of the soybean genome. Plant Physiol 176, 2133-2147.
URL PMID |
[16] |
Heo JB, Sung S (2011). Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76-79.
DOI URL |
[17] |
Hou XX, Cui J, Liu WW, Jiang N, Zhou XX, Qi HY, Meng J, Luan YS (2020). LncRNA39026 enhances tomato resistance to Phytophthora infestans by decoying miR168a and inducing PR gene expression. Phytopathology 110, 873-880.
DOI URL PMID |
[18] |
Huang L, Dong H, Zhou D, Li M, Liu YH, Zhang F, Feng YY, Yu DL, Lin S, Cao JS (2018). Systematic identification of long non-coding RNAs during pollen development and fertilization inBrassica rapa. Plant J 96, 203-222.
DOI URL PMID |
[19] |
Kapitonov VV, Jurka J (2001). Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 98, 8714-8719.
DOI URL PMID |
[20] |
Khanduja JS, Calvo IA, Joh RI, Hill IT, Motamedi M (2016). Nuclear noncoding RNAs and genome stability. Mol Cell 63, 7-20.
DOI URL PMID |
[21] |
Kidwell MG, Lisch DR (2000). Transposable elements and host genome evolution. Trends Ecol Evol 15, 95-99.
DOI URL PMID |
[22] |
Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT, Wu W, Chettoor AM, Givan SA, Cole RA, Fowler JE, Evans MMS, Scanlon MJ, Yu JM, Schnable PS, Timmermans MCP, Springer NM, Muehlbauer GJ (2014). Genome- wide discovery and characterization of maize long non- coding RNAs. Genome Biol 15, R40.
DOI URL PMID |
[23] |
Lippman Z, May B, Yordan C, Singer T, Martienssen R (2003). Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol 1, E67.
DOI URL PMID |
[24] |
Liu F, Xu YR, Chang KX, Li S, Liu ZG, Qi SD, Jia JB, Zhang M, Crawford NM, Wang Y (2019). The long noncoding RNA T5120 regulates nitrate response and assimilation in Arabidopsis. New Phytol 224, 117-131.
URL PMID |
[25] |
Liu HJ, Jian LM, Xu JT, Zhang QH, Zhang ML, Jin ML, Peng Y, Yan JL, Han BZ, Liu J, Gao F, Liu XG, Huang L, Wei WJ, Ding YX, Yang XF, Li ZX, Zhang ML, Sun JM, Bai MJ, Song WH, Chen HM, Sun XA, Li WQ, Lu YM, Liu Y, Zhao JR, Qian YW, Jackson D, Fernie AR, Yan JB (2020). High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell 32, 1397-1413.
DOI URL PMID |
[26] |
Liu J, Jung C, Xu J, Wang H, Deng SL, Bernad L, Arenas-Huertero C, Chua NH (2012). Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24, 4333-4345.
DOI URL PMID |
[27] |
Liu X, Li DY, Zhang DL, Yin DD, Zhao Y, Ji CJ, Zhao XF, Li XB, He Q, Chen RS, Hu SN, Zhu LH (2018). A novel antisense long noncoding RNA, TWISTED LEAF, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice. New Phytol 218, 774-788.
DOI URL PMID |
[28] |
Lv YD, Hu FQ, Zhou YF, Wu FL, Gaut BS (2019). Maize transposable elements contribute to long non-coding RNAs that are regulatory hubs for abiotic stress response. BMC Genomics 20, 864.
DOI URL PMID |
[29] |
Martin SL, Garfinkel DJ (2003). Survival strategies for transposons and genomes. Genome Biol 4, 313.
DOI URL PMID |
[30] |
Qin T, Zhao HY, Cui P, Albesher N, Xiong LM (2017). A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance. Plant Physiol 175, 1321-1336.
DOI URL PMID |
[31] |
Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du FY, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen WZ, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He RF, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin JK, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan CZ, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren LY, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han YJ, Lee H, Li PH, Lisch DR, Liu SZ, Liu ZJ, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang LX, Yu Y, Zhang LF, Zhou SG, Zhu QH, Bennetzen JL, Dawe RK, Jiang JM, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112-1115.
URL PMID |
[32] |
Seo JS, Sun HX, Park BS, Huang CH, Yeh SD, Jung C, Chua NH (2017). ELF18-INDUCED LONG-NONCODING RNA associates with mediator to enhance expression of innate immune response genes in Arabidopsis. Plant Cell 29, 1024-1038.
URL PMID |
[33] |
Swiezewski S, Liu FQ, Magusin A, Dean C (2009). Cold- induced silencing by long antisense transcripts of an Arabidopsis polycomb target. Nature 462, 799-802.
DOI URL PMID |
[34] |
The Arabidopsis Genome Initiative(2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.
DOI URL PMID |
[35] |
Ulitsky I (2018). Interactions between short and long noncoding RNAs. FEBS Lett 592, 2874-2883.
URL PMID |
[36] |
Wang D, Qu ZP, Yang L, Zhang QZ, Liu ZH, Do T, Adelson DL, Wang ZY, Searle I, Zhu JK (2017). Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants. Plant J 90, 133-146.
URL PMID |
[37] |
Wang X, Ai G, Zhang CL, Cui L, Wang JF, Li HX, Zhang JH, Ye ZB (2016). Expression and diversification analysis reveals transposable elements play important roles in the origin of Lycopersicon-specific lncRNAs in tomato. New Phytol 209, 1442-1455.
DOI URL PMID |
[38] |
Wang Y, Luo XJ, Sun F, Hu JH, Zha XJ, Su W, Yang JS (2018a). aOverexpressing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice. Nat Commun 9, 3516.
DOI URL PMID |
[39] |
Wang YC, Xu JY, Ge M, Ning LH, Hu MM, Zhao H (2020). High-resolution profile of transcriptomes reveals a role of alternative splicing for modulating response to nitrogen in maize. BMC Genomics 21, 353.
DOI URL PMID |
[40] |
Wang YJ, Wang YL, Zhao J, Huang JY, Shi YN, Deng DX (2018b). Unveiling gibberellin-responsive coding and long noncoding RNAs in maize. Plant Mol Biol 98, 427-438.
DOI URL PMID |
[41] |
Wu H, Yang L, Chen LL (2017). The diversity of long noncoding RNAs and their generation. Trends Genet 33, 540-552.
URL PMID |
[42] |
Xu JH, Messing J (2006). Maize haplotype with a helitron- amplified cytidine deaminase gene copy. BMC Genet 7, 52.
DOI URL PMID |
[43] |
Yang DW, Li SP, Cui HT, Zou SH, Wang W (2020). Molecular genetic mechanisms of interaction between host plants and pathogens. Hereditas 42, 278-286.
DOI URL PMID |
[44] |
Yoon JH, Abdelmohsen K, Gorospe M (2014). Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol 34, 9-14.
DOI URL PMID |
[45] |
Yu Y, Zhou YF, Feng YZ, He H, Lian JP, Yang YW, Lei MQ, Zhang YC, Chen YQ (2020). Transcriptional landscape of pathogen-responsive lncRNAs in rice unveils the role of ALEX1 in jasmonate pathway and disease resistance. Plant Biotechnol J 18, 679-690.
DOI URL PMID |
[46] |
Zhao SR, Zhang Y, Gordon W, Quan J, Xi HL, Du S, von Schack D, Zhang BH (2015). Comparison of stranded and non-stranded RNA-seq transcriptome profiling and investigation of gene overlap. BMC Genomics 16, 675.
DOI URL PMID |
[47] |
Zhao T, Tao XY, Feng SL, Wang LY, Hong H, Ma W, Shang GD, Guo SS, He YX, Zhou BL, Guan XY (2018a). LncRNAs in polyploid cotton interspecific hybrids are derived from transposon neofunctionalization. Genome Biol 19, 195.
DOI URL PMID |
[48] |
Zhao XY, Li JR, Lian B, Gu HQ, Li Y, Qi YJ (2018b). Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat Commun 9, 5056.
DOI URL PMID |
[49] |
Zheng XM, Chen J, Pang HB, Liu S, Gao Q, Wang JR, Qiao WH, Wang H, Liu J, Olsen KM, Yang QW (2019). Genome-wide analyses reveal the role of noncoding variation in complex traits during rice domestication. Sci Adv 5, eaax3619.
DOI URL PMID |
[1] | 夏璟钰 张扬建 郑周涛 赵广 赵然 朱艺旋 高洁 沈若楠 李文宇 郑家禾 张雨雪 朱军涛 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 席念勋 张原野 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[3] | 罗来聪 赖晓琴 白健 李爱新 方海富 唐明 胡冬南 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物 乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[4] | 雷自然 贾国栋 余新晓 刘子赫. 植物水分来源稳定氢氧同位素偏移研究进展[J]. 植物生态学报, 2023, 47(1): 0-0. |
[5] | 许再富. 对国家植物园体系建设“统筹原则”的一些见解[J]. 生物多样性, 2023, 31(1): 0-0. |
[6] | 张琦. 关于规范涉及喜马拉雅山地区物种中文命名的建议[J]. 生物多样性, 2023, 31(1): 0-0. |
[7] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[8] | 王姝文, 李文怀, 李艳龙, 严慧, 李永宏. 放牧家畜类型对内蒙古典型草原植物多样性和群落结构的影响[J]. 植物生态学报, 2022, 46(8): 941-950. |
[9] | 万霞, 张丽兵. 世界维管植物新分类群2021年年度报告[J]. 生物多样性, 2022, 30(8): 22116-. |
[10] | 杜诚, 刘军, 叶文, 廖帅. 中国植物新分类群、新名称变化2021年年度报告[J]. 生物多样性, 2022, 30(8): 22207-. |
[11] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[12] | 崔夏, 刘全儒, 吴超然, 何宇飞, 马金双. 京津冀外来入侵植物[J]. 生物多样性, 2022, 30(8): 21497-. |
[13] | 柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金. 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响[J]. 植物生态学报, 2022, 46(8): 932-940. |
[14] | 吴铠, 李凯, 贾伟瀚, 廖梦娜, 倪健. 湖泊沉积植物古DNA的现代过程[J]. 植物生态学报, 2022, 46(7): 735-752. |
[15] | 钱宏, 张健, 赵静超. 世界上已知维管植物有多少种? 基于多个全球植物数据库的整合[J]. 生物多样性, 2022, 30(7): 22254-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||