植物学报 ›› 2019, Vol. 54 ›› Issue (6): 786-796.DOI: 10.11983/CBB19045
王惠1,李谨谨2,徐金玉1,刘鹏1,张海燕1,*
收稿日期:
2019-03-13
接受日期:
2019-06-18
出版日期:
2019-11-01
发布日期:
2020-07-09
通讯作者:
张海燕
基金资助:
Hui Wang1,Jinjin Li2,Jinyu Xu1,Peng Liu1,Haiyan Zhang1,*
Received:
2019-03-13
Accepted:
2019-06-18
Online:
2019-11-01
Published:
2020-07-09
Contact:
Haiyan Zhang
摘要: 铜(Cu)是植物必需的微量元素, 作为多种酶的辅因子参与许多植物生理生化反应。Cu缺乏和过量均影响植物正常生长发育, 因此植物进化出精妙复杂的调控网络来严格控制植物体内的Cu含量。植物Cu转运蛋白COPT家族成员与Cu有很高的亲和力, 能够调节植物对Cu的吸收和转运, 在维持植物体内Cu稳态平衡过程中发挥重要作用。COPT蛋白涉及不同的Cu转运功能, 如从外界环境中摄取Cu、从细胞器中输出Cu、长距离运输Cu以及在不同器官间动用和再分配Cu。此外, COPT蛋白在其它离子的稳态平衡维持、昼夜节律性生物钟调控、植物激素合成和植物对激素信号的感受过程中也发挥重要作用。该文综述了模式植物拟南芥(Arabidopsis thaliana) COPT家族各成员的表达和定位、调控机制以及生物学功能等方面的最新进展。
王惠,李谨谨,徐金玉,刘鹏,张海燕. 拟南芥COPT家族蛋白研究进展. 植物学报, 2019, 54(6): 786-796.
Hui Wang,Jinjin Li,Jinyu Xu,Peng Liu,Haiyan Zhang. Advances in Studies on the COPT Proteins in Arabidopsis thaliana. Chinese Bulletin of Botany, 2019, 54(6): 786-796.
基因名称 | 表达器官 | 参考文献 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
花 | 叶 | 茎 | 根 | |||||||||||
花粉 | 花丝 | 雌蕊 | 胚珠 | 子叶 | 表皮毛 | 保卫细胞 | 维管组织 | 维管组织 | 胚轴 | 主根 | 侧根 | 根毛 | ||
COPT1 | ++ | - | / | / | + | + | + | - | - | + | + | + | / | |
COPT2 | ++ | - | - | / | + | + | / | / | - | / | + | + | + | |
COPT3 | ++ | + | / | / | / | / | / | + | / | / | / | / | / | |
COPT5 | - | + | ++ | ++ | + | + | / | ++ | + | + | ++ | + | ++ | |
COPT6 | + | + | + | + | + | + | + | ++ | ++ | / | - | + | / |
表1 利用启动子-GUS构建检测的拟南芥COPT家族基因表达模式
Table 1 Expression patterns of COPT family genes detected by use of promoter-GUS in Arabidopsis thaliana
基因名称 | 表达器官 | 参考文献 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
花 | 叶 | 茎 | 根 | |||||||||||
花粉 | 花丝 | 雌蕊 | 胚珠 | 子叶 | 表皮毛 | 保卫细胞 | 维管组织 | 维管组织 | 胚轴 | 主根 | 侧根 | 根毛 | ||
COPT1 | ++ | - | / | / | + | + | + | - | - | + | + | + | / | |
COPT2 | ++ | - | - | / | + | + | / | / | - | / | + | + | + | |
COPT3 | ++ | + | / | / | / | / | / | + | / | / | / | / | / | |
COPT5 | - | + | ++ | ++ | + | + | / | ++ | + | + | ++ | + | ++ | |
COPT6 | + | + | + | + | + | + | + | ++ | ++ | / | - | + | / |
图1 拟南芥COPT的亚细胞定位与Cu的转运(改自Rodríguez et al., 1999; Balandin and Castresana, 2002; Wintz et al., 2003; Yruela, 2009; Garcia et al., 2014) Cu2+可以被ZIP蛋白吸收或被FRO还原为Cu+, Cu+通过COPT1、COPT2和COPT6蛋白转运进入细胞质。在细胞内, COPT5定位于液泡膜和液泡前体膜, 将液泡和液泡前体中的Cu+转运到细胞质基质中。推测COPT3定位于内质网膜, 并将内质网中的Cu+转运到细胞质基质中。HMA6和HMA1分别定位于叶绿体外膜和内膜, 分别负责将Cu+和Cu2+转运到叶绿体基质。HMA8定位于类囊体膜上, 可将叶绿体基质的Cu+转运到类囊体腔中。HMA7能够转运Cu+通过高尔基体膜, 参与乙烯反应。HMA5定位于细胞膜, 介导Cu+的外排。
Figure 1 Subcellular localization of COPT and copper traffic in Arabidopsis (modified from Rodríguez et al., 1999; Balandin and Castresana, 2002; Wintz et al., 2003; Yruela, 2009; Garcia et al., 2014) Cu2+can be uptaken by ZIP proteins or reduced to Cu+ by FRO and enters into the cytosol through the COPT1, COPT2 and COPT6 transporters. In the cell, COPT5 localizes in the tonoplast and vacuolar precursor membranes and transports Cu+ to the cytosol. It is speculated that COPT3 localizes to the ER membrane and transports Cu+ to the cytosol. HMA6 and HMA1 are localized in the membranes of the chloroplast and responsible for transporting Cu+ and Cu2+ to the cytosol, respectively. HMA8 is located in the thylakoid membrane and transports the Cu+ of the stroma into the thylakoid cavity. HMA7 transports Cu+ through the golgi membrane and participating in the ethylene reaction. HMA5 localizes in the cell membrane and mediates the efflux of Cu+.
[1] | 房茜, 李鹏, 靳思, 印莉萍 ( 2007). 酵母和植物中铜的转运系统及其调控. 植物学通报 24, 807-815. |
[2] | 侯金丽 ( 2015). 铜离子的生物学特性及其吸收转运调控机制研究进展. 现代农业科技 652, 158. |
[3] | 门中华, 李生秀 ( 2009). 植物生物节律性研究进展. 生物学杂志 26, 55-57. |
[4] | 王超旻, 程楠, 韩咏竹, 胡文彬 ( 2013). 细胞内铜转运系统的研究进展. 安徽卫生职业技术学院学报 12, 82-83. |
[5] | 王靖, 徐虹, 李珣, 郑锦乾, 王立红 ( 2008). 铜绿微囊藻生物钟蛋白KaiC的自激活活性和自身相互作用研究. 海洋环境科学 27, 67-70. |
[6] | 王夏芳 ( 2015). 铜离子对环境危害现状及对策研究. 国土与自然资源研究 1, 57-59. |
[7] | 姚浩群 ( 2012). 金属离子与金属颗粒生物学活性实验研究. 博士论文. 广州: 南方医科大学. pp. 63-68. |
[8] | 袁金红, 李靖锐, 张海燕 ( 2016). 植物铜转运蛋白的结构和功能. 植物学报 51, 849-858. |
[9] | 张红晓, 张芬琴 ( 2011). 铜在植物细胞中的运输和分布. 洛阳理工学院学报(自然科学版) 21, 1-5. |
[10] | 张美琪, 陈林, 王晶 ( 2018). 铜转运蛋白与癌症的研究进展. 中国科学: 化学 48, 1385-1393. |
[11] | 赵雪芹, 张海燕, 刘维仲 ( 2012). 植物铜转运相关蛋白研究进展. 广西植物 32, 280-284. |
[12] | 赵艳, 徐迎春, 柴翠翠, 周燕 ( 2010). 铜胁迫对狭叶香蒲生长及生理特性的影响. 广西植物 30, 367-372. |
[13] | Abdel-Ghany SE, Müller-Moulé P, Niyogi KK, Pilon M, Shikanai T ( 2005). Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17, 1233-1251. |
[14] | Andrés-Colás N, Carrió-Seguí A, Abdel-Ghany SE, Pilon M, Peñarrubia L ( 2018). Expression of the intracellular COPT3-mediated Cu transport is temporally regulated by the TCP16 transcription factor. Front Plant Sci 9, 910. |
[15] | Andrés-Colás N, Perea-García A, Puig S, Peñarrubia L ( 2010). Deregulated copper transport affects Arabidopsis development especially in the absence of environmental cycles. Plant Physiol 153, 170-184. |
[16] | Balandin T, Castresana C ( 2002). AtCOX17, an Arabidop- sis homolog of the yeast copper chaperone COX17. Plant Physiol 129, 1852-1857. |
[17] | Bell-Pedersen D, Shinohara ML, Loros JJ, Dunlap JC ( 1996). Circadian clock-controlled genes isolated from Neurospora crassa are late night-to early morning specific. Proc Natl Acad Sci USA 93, 13096-13101. |
[18] | Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang HJ, Dodani SC, Pellegrini M, Huijser P, Connolly EL, Merchant SS, Krämer U ( 2012). Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. Plant Cell 24, 738-761. |
[19] | Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD, Twell D, Sze H ( 2006). Integrating mem- brane transport with male gametophyte development and function through transcriptomics. Plant Physiol 140, 1151-1168. |
[20] | Borjigin J, Payne AS, Deng J, Li XD, Wang MM, Ovodenko B, Gitlin JD, Snyder SH ( 1999). A novel pineal night- specific ATPase encoded by the Wilson disease gene. J Neurosci 19, 1018-1026. |
[21] | Burkhead JL, Reynolds KAG, Abdel-Ghany SE, Cohu CM, Pilon M ( 2009). Copper homeostasis. New Phytol 182, 799-816. |
[22] | Cardon G, Höhmann S, Klein J, Nettesheim K, Saedler H, Huijser P ( 1999). Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237, 91-104. |
[23] | Carrió-Seguí A, Garcia-Molina A, Sanz A, Peñarrubia L ( 2015). Defective copper transport in the copt5 mutant affects cadmium tolerance. Plant Cell Physiol 56, 442-454. |
[24] | Carrió-Seguí À, Romero P, Sanz A, Peñarrubia L ( 2016). Interaction between ABA signaling and copper homeostasis in Arabidopsis thaliana. Plant Cell Physiol 57, 1568-1582. |
[25] | Coego A, Brizuela E, Castillejo P, Ruíz S, Koncz C, del Pozo JC, Piñeiro M, Jarillo JA, Paz-Ares J, León J, The TRANSPLANTA Consortium ( 2014). The TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. Plant J 77, 944-953. |
[26] | Garcia L, Welchen E, Gonzalez DH ( 2014). Mitochondria and copper homeostasis in plants. Mitochondrion 19, 269-274. |
[27] | Garcia-Molina A, Andrés-Colás N, Perea-García A, Del Valle-Tascón S, Peñarrubia L, Puig S ( 2011). The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency. Plant J 65, 848-860. |
[28] | Garcia-Molina A, Andrés-Colás N, Perea-García A, Neumann U, Dodani SC, Huijser P, Peñarrubia L, Puig S ( 2013). The Arabidopsis COPT6 transport protein functions in copper distribution under copper-deficient conditions. Plant Cell Physiol 54, 1378-1390. |
[29] | Gavnholt B, Larsen K ( 2002). Molecular biology of plant laccases in relation to lignin formation. Physiol Plant 116, 273-280. |
[30] | Gayomba SR, Jung HI, Yan JP, Danku J, Rutzke MA, Bernal M, Krämer U, Kochian LV, Salt DE, Vatamaniuk OK ( 2013). The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana. Metallomics 5, 1262-1275. |
[31] | Gorecka K, Cvikrová M, Kowalska U, Eder J, Szafrańska K, Górecki R, Janas KM ( 2007). The impact of Cu treatment on phenolic and polyamine levels in plant material regenerated from embryos obtained in anther culture of carrot. Plant Physiol Biochem 45, 54-61. |
[32] | Gratäo PL, Polle A, Lea PJ, Azevedo RA ( 2005). Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32, 481-494. |
[33] | Hänsch R, Mendel RR ( 2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12, 259-266. |
[34] | Jung HI, Gayomba SR, Rutzke MA, Craft E, Kochian LV, Vatamaniuk OK ( 2012). COPT6 is a plasma membrane transporter that functions in copper homeostasis in Arabidopsis and is a novel target of SQUAMOSA promoter- binding protein-like 7. J Biol Chem 287, 33252-33267. |
[35] | Kampfenkel K, Kushnir S, Babiychuk E, Inzé D, Van Montagu M ( 1995). Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J Biol Chem 270, 28479-28486. |
[36] | Klaumann S, Nickolaus SD, Fürst SH, Starck S, Schneider S, Ekkehard Neuhaus H, Trentmann O ( 2011). The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytol 192, 393-404. |
[37] | Komori H, Higuchi Y ( 2010). Structure and molecular evolution of multicopper blue proteins. Biomol Concepts 1, 31-40. |
[38] | Kuper J, Llamas A, Hecht HJ, Mendel RR, Schwarz G ( 2004). Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism. Nature 430, 803-806. |
[39] | Li HX, Fan RC, Li LB, Wei B, Li GL, Gu LQ, Wang XP, Zhang XQ ( 2014). Identification and characterization of a novel copper transporter gene family TaCT1 in common wheat. Plant Cell Environ 37, 1561-1573. |
[40] | Lv QD, Zhong YJ, Wang YG, Wang ZY, Zhang L, Shi J, Wu ZC, Liu Y, Mao CZ, Yi KK, Wu P ( 2014). SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice. Plant Cell 26, 1586-1597. |
[41] | Martín-Trillo M, Cubas P ( 2010). TCP genes: a family snapshot ten years later. Trends Plant Sci 15, 31-39. |
[42] | Mishra P, Panigrahi KC ( 2015). GIGANTEA—an emerging story. Front Plant Sci 6, 8. |
[43] | Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM, Givan SA, McEntee C, Kay SA, Chory J ( 2007). The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb Symp Quant Biol 72, 353-363. |
[44] | Nagae M, Nakata M, Takahashi Y ( 2008). Identification of negative cis-acting elements in response to copper in the chloroplastic iron superoxide dismutase gene of the moss Barbula unguiculata. Plant Physiol 146, 1687-1696. |
[45] | Page MD, Janette K, Hamel PP, Merchant SS ( 2009). Two Chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation. Plant Cell 21, 928-943. |
[46] | Peñarrubia L, Andrés-Colás N, Moreno J, Puig S ( 2010). Regulation of copper transport in Arabidopsis thaliana: a biochemical oscillator? J Biol Inorg Chem 15, 29-36. |
[47] | Peñarrubia L, Romero P, Carrió-Seguí A, Andrés-Bordería A, Moreno J, Sanz A ( 2015). Temporal aspects of copper homeostasis and its crosstalk with hormones. Front Plant Sci 6, 255. |
[48] | Perea-García A, Andrés-Bordería A, Mayo de Andrés S, Sanz A, Davis AM, Davis SJ, Huijser P, Peñarrubia L ( 2016a). Modulation of copper deficiency responses by diurnal and circadian rhythms in Arabidopsis thaliana. J Exp Bot 67, 391-403. |
[49] | Perea-García A, Garcia-Molina A, Andrés-Colás N, Vera-Sirera F, Pérez-Amador MA, Puig S, Peñarrubia L ( 2013). Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling. Plant Physiol 162, 180-194. |
[50] | Perea-García A, Sanz A, Moreno J, Andrés-Bordería A, De Andrés SM, Davis AM, Huijser P, Davis SJ, Peñarrubia L ( 2016b). Daily rhythmicity of high affinity copper transport. Plant Signal Behav 11, e1140291. |
[51] | Puga MI, Mateos I, Charukesi R, Wang ZY, Franco-orrilla JM, De Lorenzo L, Irigoyen ML, Masiero S, Bustos R, Rodríguez J, Leyva A, Rubio V, Sommer H, Paz-Ares J ( 2014). Spx1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in Arabidopsis. Proc Natl Acad Sci USA 111, 14947-14952. |
[52] | Raven JA, Evans MCW, Korb RE ( 1999). The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60, 111-150. |
[53] | Rodríguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB ( 1999). A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283, 996-998. |
[54] | Sancenón V, Puig S, Mateu-Andrés I, Dorcey E, Thiele DJ, Peñarrubia L ( 2004). The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279, 15348-15355. |
[55] | Sancenón V, Puig S, Mira H, Thiele DJ, Peñarrubia L ( 2003). Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51, 577-587. |
[56] | Seo PJ, Mas P ( 2015). STRESSing the role of the plant circadian clock. Trends Plant Sci 20, 230-237. |
[57] | Sommer F, Kropat J, Malasarn D, Grossoehme NE, Chen X, Giedroc DP, Merchant SS ( 2010). The CRR1 nutritIonal copper sensor in Chlamydomonas contains two distinct metal-responsive domains. Plant Cell 22, 4098-4113. |
[58] | Tiwari M, Venkatachalam P, Penarrubia L, Sahi SV ( 2017). COPT2, a plasma membrane located copper transporter, is involved in the uptake of Au in Arabidopsis. Sci Rep 7, 11430. |
[59] | Wang HL, Du HM, Li HY, Huang Y, Ding JZ, Liu C, Wang N, Lan H, Zhang SZ ( 2018). Identification and functional characterization of the ZmCOPT copper transporter family in maize. PLoS One 13, e0199081. |
[60] | Wang XH, Li HY, Du XB, Harris J, Guo ZJ, Sun HZ ( 2012). Activation of carboplatin and nedaplatin by the N-terminus of human copper transporter 1 (hCTR1). Chem Sci 3, 3206-3215. |
[61] | Waters BM, McInturf SA, Stein RJ ( 2012). Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana. J Exp Bot 63, 5903-5918. |
[62] | Wintz H, Fox T, Wu YY, Feng V, Chen WQ, Chang HS, Zhu T, Vulpe C ( 2003). Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278, 47644-47653. |
[63] | Wu XB, Sinani D, Kim H, Lee J ( 2009). Copper transport activity of yeast Ctr1 is down-regulated via its C terminus in response to excess copper. J Biol Chem 284, 4112-4122. |
[64] | Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Després C ( 2012). The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1, 639-647. |
[65] | Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T ( 2009). SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21, 347-361. |
[66] | Yan SP, Dong XN ( 2014). Perception of the plant immune signal salicylic acid. Curr Opin Plant Biol 20, 64-68. |
[67] | Yruela I ( 2009). Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36, 409-430. |
[68] | Yu PL, Yuan JH, Deng X, Ma M, Zhang HY ( 2014). Subcellular targeting of bacterial CusF enhances Cu accumulation and alters root to shoot Cu translocation in Arabidopsis. Plant Cell Physiol 55, 1568-1581. |
[69] | Yu PL, Yuan JH, Zhang H, Deng X, Ma M, Zhang HY ( 2016). Engineering metal-binding sites of bacterial CusF to enhance Zn/Cd accumulation and resistance by subcellular targeting. J Hazard Mater 302, 275-285. |
[70] | Yu ZL, Zhang JG, Wang XC, Chen J ( 2008). Excessive copper induces the production of reactive oxygen species, which is mediated by phospholipase D, nicotinamide adenine dinucleotide phosphate oxidase and antioxidant systems. J Integr Plant Biol 50, 157-167. |
[71] | Yuan M, Chu ZH, Li XH, Xu CG, Wang SP ( 2010). The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22, 3164-3076. |
[72] | Yuan M, Li XH, Xiao JH, Wang SP ( 2011). Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BMC Plant Biol 11, 69. |
[73] | Zhang HY, Zhao X, Li JG, Cai HQ, Deng XW, Li L ( 2014). MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper. Plant Cell 26, 4933-4953. |
[1] | 刘洋, 马煦, 邸楠, 曾子航, 付海曼, 李新, 席本野. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 123-133. |
[2] | 蒋林惠, 罗琌, 肖正高, 李大明, 陈小云, 刘满强, 胡锋. 长期施肥对水稻生长和抗虫性的影响: 解析土壤生物的贡献[J]. 生物多样性, 2016, 24(8): 907-915. |
[3] | 熊淑萍,张娟娟,杨阳,刘娟,王晓航,吴延鹏,马新明. 不同冬小麦品种在3种质地土壤中氮代谢特征及利用效率分析[J]. 植物生态学报, 2013, 37(7): 601-610. |
[4] | 杨晓东, 吕光辉. 新疆艾比湖湿地自然保护区胡杨根系水分再分配的估算[J]. 植物生态学报, 2011, 35(8): 816-824. |
[5] | 王昆, 刘颖慧, 高琼, 莫兴国. 植物根系水力再分配模型参数分析与尺度转换[J]. 植物生态学报, 2006, 30(6): 969-975. |
[6] | 黄骥, 龙春林. 云南黄连的传统种植及其在生物多样性保护中的价值[J]. 生物多样性, 2006, 14(1): 79-86. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||