植物学报 ›› 2018, Vol. 53 ›› Issue (6): 741-744.DOI: 10.11983/CBB18187 cstr: 32102.14.CBB18187
收稿日期:
2018-09-02
出版日期:
2018-11-01
发布日期:
2018-12-05
通讯作者:
沈锦波,姜里文
作者简介:
作者简介:白克智, 1959年开始在中国科学院植物研究所工作, 先后任助理研究员、研究员, 长期从事植物生长发育及其调控的研究。1986年,其主持的“满江红生物学特性研究”荣获中国科学院科技进步二等奖。曾任《植物生理学报》编委、《植物学报》常务编委、中国植物生长调节剂协会主任等职。
Shen Jinbo1,*(), Jiang Liwen2,3,*(
)
Received:
2018-09-02
Online:
2018-11-01
Published:
2018-12-05
Contact:
Shen Jinbo,Jiang Liwen
摘要: 微管是细胞骨架的重要组成部分, 为真核细胞生命活动所必需。与其它生物体类似, 微管不仅在植物生长发育中起重要作用, 而且参与响应外界环境信号。近期, 中国科学家在解析植物微管精准切割及微管骨架动态重构调控机制的研究中取得突破性进展。
沈锦波, 姜里文. 中国科学家在植物细胞骨架研究领域取得突破性进展. 植物学报, 2018, 53(6): 741-744.
Shen Jinbo, Jiang Liwen. Chinese Scientists Make Groundbreaking Discoveries in Plant Cytoskeleton. Chinese Bulletin of Botany, 2018, 53(6): 741-744.
图 1 Katanin和Augmin在植物微管(MTs)动态构象中的功能模式图(改自Wang et al., 2017, 2018) (A) 拟南芥Katanin蛋白复合体的组装及其微管切割机制。Katanin蛋白复合体由p60亚基KTN1和p80亚基KTN80组成异源二聚体, 最终形成十二聚体的环状超复合体(左图)。KTN80可将KTN1-KTN80异源二聚体导向至微管切割位点; 而KTN1介导形成KTN1- KTN80环状超复合体, 并识别特异的微管构象、完成切割(右图)。(B) Augmin定位在微管交叉点上, 并且通过抑制Katanin的切割和稳定微管交叉构象, 来调控微管动态重组与细胞形态建成(左图)。与野生型相比, 在Augmin的基因沉默突变体中(amiR-AUG6), 抑制Augmin活性能使微管切割的频率加快并形成更多的平行微管阵列(右图)。
Figure 1 Schematic models of Katanin and Augmin functions on microtubules (MTs) organization in plants (modified from Wang et al., 2017, 2018) (A) The formation of Katanin complexes and MTs severing in Arabidopsis cells. Katanin is composed of a p60 subunit KTN1 and a p80 subunit KTN80, which exists as a KTN1-KTN80 heterodimer in the cytosol (left panel). KTN80 determines the precise targeting of KTN1-KTN80 heterodimers to MTs crossover and branching nucleation sites. KTN1 further triggers the oligomerization of the mixed types of KTN1-KTN80 heterodimers that sense MT geometry to confer precise MT severing (right panel); (B) Augmin functions in regulating microtubule arrays by preventing katanin-mediated microtubule severing and maintaining the stability of crossovers (left panel). In the Augmin knockdown mutant (amiR-AUG6), a significantly higher microtubule severing frequency occurs and a greater proportion of aligned microtubule arrays (right panel) compared to the fine-network microtubule architectures observed in wild-type (left panel).
[1] |
Ehrhardt DW (2008). Straighten up and fly right: microtubule dynamics and organization of non-centrosomal arrays in higher plants.Curr Opin Cell Biol 20, 107-116.
DOI URL |
[2] |
Li SD, Bashline L, Zheng YZ, Xin XR, Huang SX, Kong ZS, Kim SH, Cosgrove DJ, Gu Y (2016). Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants.Proc Natl Acad Sci USA 113, 11348-11353.
DOI URL PMID |
[3] |
Liu T, Tian J, Wang GD, Yu YJ, Wang CF, Ma YP, Zhang XX, Xia GX, Liu B, Kong ZS (2014). Augmin triggers mic- rotubule-dependent microtubule nucleation in interphase plant cells.Curr Biol 24, 2708-2713.
DOI URL PMID |
[4] |
McFarlane HE, D$\ddot{o}$ring A, Persson S (2014). The cell biology of cellulose synthesis.Annu Rev Plant Biol 65, 69-94.
DOI URL PMID |
[5] |
McNally FJ, Vale RD (1993). Identification of katanin, an ATPase that severs and disassembles stable microtu- bules.Cell 75, 419-429.
DOI URL PMID |
[6] |
Nick P (2013). Microtubules, signaling and abiotic stress.Plant J 75, 309-323.
DOI URL PMID |
[7] |
Paredez AR, Somerville CR, Ehrhardt DW (2006). Vis- ualization of cellulose synthase demonstrates functional association with microtubules.Science 312, 1491-1495.
DOI URL PMID |
[8] |
Roll-Mecak A, McNally FJ (2010). Microtubule-severing enzymes.Curr Opin Cell Biol 22, 96-103.
DOI URL |
[9] |
Sharp DJ, Ross JL (2012). Microtubule-severing enzymes at the cutting edge.J Cell Sci 125, 2561-2569.
DOI URL PMID |
[10] |
Shaw SL (2013). Reorganization of the plant cortical microtubule array.Curr Opin Plant Biol 16, 693-697.
DOI URL PMID |
[11] |
Wang CF, Liu WW, Wang GD, Li J, Dong L, Han LB, Wang Q, Tian J, Yu YJ, Gao CX, Kong ZS (2017). KTN80 confers precision to microtubule severing by specific targeting of katanin complexes in plant cells.EMBO J 36, 3435-3447.
DOI URL PMID |
[12] |
Wang GD, Wang CF, Liu WW, Ma YP, Dong L, Tian J, Yu YJ, Kong ZS (2018). Augmin antagonizes Katanin at microtubule crossovers to control the dynamic organi- zation of plant cortical arrays.Curr Biol 28, 1311-1317.
DOI URL PMID |
[13] |
Wasteneys GO, Ambrose JC (2009). Spatial organization of plant cortical microtubules: close encounters of the 2D kind.Trends Cell Biol 19, 62-71.
DOI URL PMID |
[14] |
Watanabe Y, Meents MJ, McDonnell LM, Barkwill S, Sampathkumar A, Cartwright HN, Demura T, Ehrhardt DW, Samuels AL, Mansfield SD (2015). Visualization of cellulose synthases in Arabidopsis secondary cell walls.Science 350, 198-203.
DOI URL PMID |
[1] | 王韫慧, 王一帆, 蔺佳雨, 李金红, 姚士恩, 冯湘池, 曹振林, 王俊, 李美娜. 植物驱动蛋白: 从微管阵列到生理活动调控[J]. 植物学报, 2022, 57(3): 358-374. |
[2] | 岳剑茹, 赫云建, 邱天麒, 郭南南, 韩雪萍, 王显玲. 植物微管骨架参与下胚轴伸长调节机制研究进展[J]. 植物学报, 2021, 56(3): 363-371. |
[3] | 王雅静,张欣莹,黄桂荣,刘晓英,郭瑞,顾峰雪,钟秀丽,梅旭荣. 植物磷脂酸的特性及其在ABA诱导气孔运动中的作用[J]. 植物学报, 2019, 54(2): 245-154. |
[4] | 李凌飞, 彭建宗, 王小菁. 非洲菊微管相关蛋白基因GMAP65-1功能分析[J]. 植物学报, 2015, 50(1): 12-21. |
[5] | 黄刚, 赵学勇, 黄迎新, 李玉霖, 苏延桂. 两种生境条件下差不嘎蒿细根寿命[J]. 植物生态学报, 2009, 33(4): 755-763. |
[6] | 李志刚;张新成;林丽;李素丽;杨丽涛;李杨瑞. 甘蔗茎尖细胞有丝分裂过程中微管骨架的变化[J]. 植物学报, 2008, 25(03): 276-283. |
[7] | 黄刚, 赵学勇, 苏延桂. 科尔沁沙地3种草本植物根系生长动态[J]. 植物生态学报, 2007, 31(6): 1161-1167. |
[8] | 王晓华 郝怀庆 王钦丽 郑茂钟 林金星. 花粉管细胞结构与生长机制研究进展[J]. 植物学报, 2007, 24(03): 340-354. |
[9] | 何群;尤瑞麟. 应用Steedman's wax 切片法观察植物细胞微管骨架[J]. 植物学报, 2004, 21(05): 547-555. |
[10] | 刘宁 刘建武. 蕨类植物精细胞运动器和细胞骨架的研究[J]. 植物学报, 2004, 21(02): 164-171. |
[11] | 贺新强 崔克明. 植物细胞次生壁形成的研究进展[J]. 植物学报, 2002, 19(05): 513-522. |
[12] | 侯雷平 李梅兰. 油菜素内酯(BR)促进植物生长机理研究进展[J]. 植物学报, 2001, 18(05): 560-566. |
[13] | 许莉 郑文竹 左正宏 周涵韬 许玉德. 玉米a-微管蛋白分子生物学研究进展[J]. 植物学报, 1999, 16(05): 488-494. |
[14] | 蔡雪. 被子植物花粉形成过程中细胞骨架的动态及生物学意义[J]. 植物学报, 1999, 16(04): 339-344. |
[15] | 于荣 袁明 王学臣. 微管骨架的动态特性及其调控[J]. 植物学报, 1998, 15(06): 19-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||