植物学报 ›› 2017, Vol. 52 ›› Issue (1): 10-18.DOI: 10.11983/CBB16187
所属专题: 水稻生物学专辑 (2017年52卷1期)
收稿日期:
2016-09-21
接受日期:
2016-10-20
出版日期:
2017-01-01
发布日期:
2017-01-23
通讯作者:
钱前
作者简介:
# 共同第一作者
基金资助:
Lianguang Shang1, Zhenyu Gao2, Qian Qian1,2*
Received:
2016-09-21
Accepted:
2016-10-20
Online:
2017-01-01
Published:
2017-01-23
Contact:
Qian Qian
About author:
# Co-first authors
摘要: 杂种优势是指两个遗传基础有差异的亲本杂交生成的杂合子在生长势和生物量等方面优于两个亲本的现象。虽然杂种优势在农业生产中已经得到很好的利用, 但对于其形成的遗传机理仍没有统一的解释。目前, 解释杂种优势遗传基础的模型主要有显性、超显性和上位性。分子数量遗传学的发展加快了杂种优势的研究。该文主要综述了近期在数量性状位点(QTL)水平的杂种优势遗传基础的研究进展, 对作物杂种优势的QTL定位进行了回顾和展望。
商连光, 高振宇, 钱前. 作物杂种优势遗传基础的研究进展. 植物学报, 2017, 52(1): 10-18.
Lianguang Shang, Zhenyu Gao, Qian Qian. Progress in Understanding the Genetic Basis of Heterosis in Crops. Chinese Bulletin of Botany, 2017, 52(1): 10-18.
数量性状位点效应 | 群体 | 物种 | 参考文献 |
---|---|---|---|
显性 | 1RIL和2BC | 水稻(Oryza sativa) | Xiao et al., 1995 |
超显性和上位性 | F2:3 | 水稻(O. sativa) | Yu et al., 1997 |
超显性 | F2 | 水稻(O. sativa) | Zhuang et al., 2000 |
超显性和上位性 | 1RIL、2BC和2TC | 水稻(O. sativa) | Li et al., 2001 |
超显性和上位性 | 1RIL、2BC和2TC | 水稻(O. sativa) | Luo et al., 2001 |
上位性 | IF2 | 水稻(O. sativa) | Hua et al., 2003 |
超显性 | 1RIL和2BC | 水稻(O. sativa) | Mei et al., 2005 |
超显性 | IL和TC | 番茄(Solanum lycopersicum) | Semel et al., 2006 |
显性 | RIL和3TC | 玉米(Zea mays) | Frascaroli et al., 2007 |
超显性 | 1RIL和2BC | 水稻(O. sativa) | 李兰芝等, 2008 |
显性、超显性和上位性 | 2RIL和4BC | 水稻(O. sativa) | Li et al., 2008 |
显性、超显性和上位性 | DH和TC | 油菜(Brassica campestris) | Radoev et al., 2008 |
加性、超显性和上位性 | 1RIL和2BC | 水稻(O. sativa) | Luo et al., 2009 |
显性和上位性 | IF2 | 玉米(Z. mays) | Tang et al., 2010 |
超显性和上位性 | 1RIL和3TC | 玉米(Z. mays) | Song et al., 2011 |
显性、超显性和上位性 | IF2 | 水稻(O. sativa) | Zhou et al., 2012 |
假超显性 | 3RIL和9TC | 玉米(Z. mays) | Larièpe et al., 2012 |
超显性 | CSIL和TC | 棉花(Gossypium hirsutum) | Guo et al., 2013 |
显性 | IF2 | 玉米(Z. mays) | Guo et al., 2014 |
超显性 | DH和2BC | 水稻(O. sativa) | Jiang et al., 2014 |
部分显性、超显性和上位性 | F2:3 | 棉花(G. hirsutum) | Liang et al., 2015 |
假超显性 | RIL | 高粱(Sorghum vulgare) | Li et al., 2015 |
超显性 | SSSLs和TC | 玉米(Z. mays) | Wei et al., 2015 |
显性 | 1495 hybrids | 水稻(O. sativa) | Huang et al., 2015 |
部分显性和超显性 | 14F2 | 水稻(O. sativa) | Huang et al., 2016 |
部分显性、超显性和上位性 | 1RIL和1BC | 棉花(G. hirsutum) | Shang et al., 2016a |
超显性和上位性 | IF2 | 水稻(O. sativa) | Zhu et al., 2016 |
表1 基于QTL分析作物杂种优势的主要进展
Table 1 Progress of heterosis based on QTL analysis in crop
数量性状位点效应 | 群体 | 物种 | 参考文献 |
---|---|---|---|
显性 | 1RIL和2BC | 水稻(Oryza sativa) | Xiao et al., 1995 |
超显性和上位性 | F2:3 | 水稻(O. sativa) | Yu et al., 1997 |
超显性 | F2 | 水稻(O. sativa) | Zhuang et al., 2000 |
超显性和上位性 | 1RIL、2BC和2TC | 水稻(O. sativa) | Li et al., 2001 |
超显性和上位性 | 1RIL、2BC和2TC | 水稻(O. sativa) | Luo et al., 2001 |
上位性 | IF2 | 水稻(O. sativa) | Hua et al., 2003 |
超显性 | 1RIL和2BC | 水稻(O. sativa) | Mei et al., 2005 |
超显性 | IL和TC | 番茄(Solanum lycopersicum) | Semel et al., 2006 |
显性 | RIL和3TC | 玉米(Zea mays) | Frascaroli et al., 2007 |
超显性 | 1RIL和2BC | 水稻(O. sativa) | 李兰芝等, 2008 |
显性、超显性和上位性 | 2RIL和4BC | 水稻(O. sativa) | Li et al., 2008 |
显性、超显性和上位性 | DH和TC | 油菜(Brassica campestris) | Radoev et al., 2008 |
加性、超显性和上位性 | 1RIL和2BC | 水稻(O. sativa) | Luo et al., 2009 |
显性和上位性 | IF2 | 玉米(Z. mays) | Tang et al., 2010 |
超显性和上位性 | 1RIL和3TC | 玉米(Z. mays) | Song et al., 2011 |
显性、超显性和上位性 | IF2 | 水稻(O. sativa) | Zhou et al., 2012 |
假超显性 | 3RIL和9TC | 玉米(Z. mays) | Larièpe et al., 2012 |
超显性 | CSIL和TC | 棉花(Gossypium hirsutum) | Guo et al., 2013 |
显性 | IF2 | 玉米(Z. mays) | Guo et al., 2014 |
超显性 | DH和2BC | 水稻(O. sativa) | Jiang et al., 2014 |
部分显性、超显性和上位性 | F2:3 | 棉花(G. hirsutum) | Liang et al., 2015 |
假超显性 | RIL | 高粱(Sorghum vulgare) | Li et al., 2015 |
超显性 | SSSLs和TC | 玉米(Z. mays) | Wei et al., 2015 |
显性 | 1495 hybrids | 水稻(O. sativa) | Huang et al., 2015 |
部分显性和超显性 | 14F2 | 水稻(O. sativa) | Huang et al., 2016 |
部分显性、超显性和上位性 | 1RIL和1BC | 棉花(G. hirsutum) | Shang et al., 2016a |
超显性和上位性 | IF2 | 水稻(O. sativa) | Zhu et al., 2016 |
[1] | 陈深广, 沈希宏, 曹立勇, 占小登, 冯跃, 吴伟明, 程式华 (2010). 水稻产量性状杂种优势的QTL定位. 中国农业科学 43, 4983-4990. |
[2] | 李兰芝, 卢开阳, 牟同敏, 胡中立 (2008). 水稻剑叶和倒二叶形态性状的杂种优势. 武汉大学学报(理学版) 54, 472-478. |
[3] | 刘贤青, 董学奎, 罗杰 (2015). 基于连锁与关联分析的植物代谢组学研究进展. 生命科学 8, 986-994. |
[4] | 王智权, 江玲, 尹长斌, 王晓玲, 雷建国, 肖宇龙, 刘喜, 刘世家, 陈亮明, 余传元, 万建民 (2013). 水稻产量相关农艺性状杂种优势位点的定位. 中国水稻科学 27, 569-576. |
[5] | 王智权, 王晓玲, 雷建国, 肖宇龙, 李马忠, 余传元 (2015). 利用染色体片段置换系浅析三系杂交水稻中的杂种优势位点. 江西农业大学学报 5, 765-773. |
[6] | 辛业芸, 袁隆平 (2014). 超级杂交稻两优培九产量杂种优势标记与QTL分析. 中国农业科学 47, 2699-2714. |
[7] | 杨淑华, 王台, 钱前, 王小菁, 左建儒, 顾红雅, 姜里文, 陈之端, 白永飞, 孔宏智, 陈凡, 萧浪涛, 董爱武, 种康 (2016). 2015年中国植物科学若干领域重要研究进展. 植物学报 51, 416-472. |
[8] | Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005). Cytokinin oxidase regulates rice grain production.Science 309, 741-745. |
[9] | Birchler JA (2015). Heterosis: the genetic basis of hybrid vigour.Nat Plants 1, 15020 |
[10] | Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA (2010). Heterosis.Plant Cell 22, 2105-2112. |
[11] | Bruce AB (1910). The mendelian theory of heredity and the augmentation of vigor.Science 32, 627-628. |
[12] | East EM (1908). Inbreeding in Corn in Reports of the Connecticut Agricultural Experiment Station for Years 1907- 1908. New Haven: Connecticut Agricultural Experiment Station. pp. 419-428. |
[13] | East EM (1936). Heterosis.Genetics 21, 375-397. |
[14] | Fiorani F, Schurr U (2013). Future scenarios for plant phenotyping.Annu Rev Plant Biol 64, 267-291. |
[15] | Frascaroli E, Canè MA, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Pè ME (2007). Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines.Genetics 176, 625-644. |
[16] | Garcia A, Wang S, Melchinger A, Zeng Z (2008). Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice.Genetics 180, 1707-1724. |
[17] | Goff S, Zhang Q (2013). Heterosis in elite hybrid rice: speculation on the genetic and biochemical mechanisms.Curr Opin Plant Biol 16, 221-227. |
[18] | Graham G, Wolff D, Stuber C (1997). Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping.Crop Sci 37, 1601-1610. |
[19] | Guo T, Yang N, Tong H, Pan Q, Yang X, Tang J, Wang J, Li J, Yan J (2014). Genetic basis of grain yield heterosis in an “immortalized F2” maize population.Theor Appl Ge- net 127, 2149-2158. |
[20] | Guo X, Guo Y, Ma J, Wang F, Sun M, Gui L, Zhou J, Song X, Sun X, Zhang T (2013). Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton.J Integr Plant Biol 55, 759-774. |
[21] | He X, Hu Z, Zhang Y (2012). Genome-wide mapping of QTL associated with heterosis in the RIL-based NCIII design.Chin Sci Bull 57, 2655-2665. |
[22] | Hochholdinger F, Hoecker N (2007). Towards the molecular basis of heterosis.Trends Plant Sci 12, 427-432. |
[23] | Houle D, Govindaraju D, Omholt S (2010). Phenomics: the next challenge.Nat Rev Genet 11, 855-866. |
[24] | Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q (2003). Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid.Proc Natl Acad Sci USA 100, 2574-2579. |
[25] | Hua J, Xing Y, Xu C, Sun X, Yu S, Zhang Q (2002). Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance.Genetics 162, 1885-1895. |
[26] | Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010). Genome-wide association studies of 14 agronomic traits in rice landraces.Nat Genet 42, 961-967. |
[27] | Huang X, Yang S, Gong J, Zhao Y, Feng Q, Gong H, Li W, Zhan Q, Cheng B, Xia J, Chen N, Hao Z, Liu K, Zhu C, Huang T, Zhao Q, Zhang L, Fan D, Zhou C, Lu Y, Weng Q, Wang ZX, Li J, Han B (2015). Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis.Nat Commun 6, 6258 |
[28] | Huang X, Yang X, Gong J, Zhao Q, Feng Q, Zhan Q, Zhao Y, Li W, Cheng B, Xia J, Chen N, Huang T, Zhang L, Fan D, Chen J, Zhou C, Lu Y, Weng Q, Han B (2016). Genomic architecture of heterosis for yield traits in rice.Nature 537, 629-633. |
[29] | Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B (2012). Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm.Nat Genet 44, 32-39. |
[30] | Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice.Nat Genet 42, 541-544. |
[31] | Jones D (1917). Dominance of linked factors as a means of accounting for heterosis.Proc Natl Acad Sci USA 3, 310-312 |
[32] | Kearsey M, Jinks J (1968). A general method of detecting additive, dominance and epistatic variation for metrical traits.Heredity 23, 403-409. |
[33] | Krieger U, Lippman Z, Zamir D (2010). The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato.Nat Genet 42, 459-463. |
[34] | Larièpe A, Mangin B, Jasson S, Combes V, Dumas F, Jamin P, Lariagon C, Jolivot D, Madur D, Fiévet J, Gallais A, Dubreuil P, Charcosset A, Moreau L (2012). The genetic basis of heterosis: multi-parental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.).Genetics 190, 795-811. |
[35] | Li D, Huang Z, Song S, Xin Y, Mao D, Lv Q, Zhou M, Tian D, Tang M, Wu Q, Liu X, Chen T, Song X, Fu X, Zhao B, Liang C, Li A, Liu G, Li S, Hu S, Cao X, Yu J, Yuan L, Chen C, Zhu L (2016). Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase.Proc Natl Acad Sci USA 113, 6026-6035. |
[36] | Li L, Lu K, Chen Z, Mu T, Hu Z, Li X (2008). Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids.Genetics 180, 1725-1742. |
[37] | Li X, Li X, Fridman E, Tesso TT, Yu J (2015). Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis.Proc Natl Acad Sci USA 112, 11823-11828. |
[38] | Li Z, Luo L, Mei H, Wang D, Shu Q, Tabien R, Zhong D, Ying C, Stansel JW, Khush GS, Paterson AH (2001). Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield.Genetics 158, 1737-1753. |
[39] | Liang Q, Shang L, Wang Y, Hua J (2015). Partial dominance, overdominance and epistasis as the genetic basis of heterosis in Upland cotton (Gossypium hirsutum L.).PLoS One 10, e0143548. |
[40] | Lippman ZB, Zamir D (2007). Heterosis: revisiting the magic.Trends Genet 23, 60-66. |
[41] | Lu Y, Zhang S, Trushar S, Xie C, Hao Z, Li X, Farkhari M, Ribaut JM, Cao M, Rong T, Xu Y (2010) Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize.Proc Natl Acad Sci USA 107, 19585-19590. |
[42] | Luo L, Lia Z, Mei H, Shu Q, Tabien R, Zhong D, Ying C, Stansel JW, Khush GS, Paterson AH (2001). Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components.Genetics 158, 1755-1771. |
[43] | Luo X, Fu Y, Zhang P, Wu S, Tian F, Liu J, Zhu Z, Yang J, Sun C (2009). Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice.J Integr Plant Biol 51, 393-408. |
[44] | Luo X, Wu S, Tian F, Xin X, Zha X, Dong X, Fu Y, Wang X, Yang J, Sun C (2011). Identification of heterotic loci associated with yield-related traits in Chinese common wild rice (Oryza rufipogon Griff.).Plant Sci 181, 14-22. |
[45] | Matsuda F, Nakabayashi R, Yang Z, Okazaki Y, Yonemaru J, Ebana K, Yano M, Saito K (2015). Metabolome- genome-wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism.Plant J 81, 13-23. |
[46] | Mei H, Li Z, Shu Q, Guo L, Wang Y, Yu X, Ying C, Luo L (2005). Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations.Theor Appl Genet 110, 649-659. |
[47] | Mei H, Luo L, Ying C, Wang Y, Yu X, Guo L, Paterson AH, Li Z (2003). Gene actions of QTLs affecting several ag- ronomic traits resolved in a recombinant inbred rice po- pulation and two testcross populations.Theor Appl Genet 107, 89-101. |
[48] | Minvielle F (1987). Dominance is not necessary for heterosis: a two-locus model.Genet Res 49, 245-247. |
[49] | Nordborg M, Weigel D (2008). Next-generation genetics in plants.Nature 456, 720-723. |
[50] | Radoev M, Becker HC, Ecke W (2008). Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping.Genetics 179, 1547-1558. |
[51] | Richey F (1942). Mock-dominance and hybrid vigor.Science 96, 280-281. |
[52] | Schnable P, Springer N (2013). Progress toward understanding heterosis in crop plants.Annu Rev Plant Biol 64, 71-88. |
[53] | Schnell F, Cockerham C (1992). Multiplicative vs. arbitrary gene action in heterosis.Genetics 131, 461-469. |
[54] | Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D (2006). Overdominant quantitative trait loci for yield and fitness in tomato.Proc Natl Acad Sci USA 103, 12981-12986. |
[55] | Shang L, Liang Q, Wang Y, Zhao Y, Wang K, Hua J (2016a). Epistasis together with partial dominance, over- dominance and QTL by environment interactions contri- bute to yield heterosis in upland cotton.Theor Appl Genet 129, 1429-1446. |
[56] | Shang L, Wang Y, Cai S, Ma L, Liu F, Chen Z, Su Y, Wang K, Hua J (2016b). Genetic analysis of upland cotton dynamic heterosis for boll number per plant at multiple developmental stages.Sci Rep 6, 35515. |
[57] | Shull G (1908). The composition of a field of maize.J Hered 1, 296-301. |
[58] | Song F, Peng H, Liu T, Zhang Y, Sun Q, Ni Z (2011). Heterosis for plant height and ear position in maize revealed by quantitative trait loci analysis with triple testcross design.Acta Agronomica Sin 37, 1186-1195. |
[59] | Stuber C, Lincoln S, Wolff D, Helentjaris T, Lander ES (1992). Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers.Genetics 132, 823-839. |
[60] | Tang J, Yan J, Ma X, Teng W, Wu W, Dai J, Dhillon BS, Melchinger AE, Li J (2010). Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population.Theor Appl Genet 120, 333-340. |
[61] | Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F (2016). Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings.Nat Genet 48, 1233-1241. |
[62] | Wei X, Lu X, Zhang Z, Xu M, Mao K, Li W, Wei F, Sun P, Tang J (2016). Genetic analysis of heterosis for maize grain yield and its components in a set of SSSL testcross populations.Euphytica 210, 181-193. |
[63] | Wei X, Wang B, Peng Q, Wei F, Mao K, Zhang X, Sun P, Liu Z, Tang J (2015). Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population.Mol Breed 35, 1-13. |
[64] | Williams W (1959). Heterosis and the genetics of complex characters.Nature 184, 527-530. |
[65] | Xiang C, Zhang H, Wang H, Wei S, Fu B, Xia J, Li Z, Gao Y, Ye G (2016). Dissection of heterosis for yield and related traits using populations derived from introgression lines in rice.Crop J 4, 468-478. |
[66] | Xiao J, Li J, Yuan L, Tanksley SD (1995). Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers.Genetics 140, 745-754. |
[67] | Xin X, Wang W, Yang J, Luo XJ (2011). Genetic analysis of heterotic loci detected in a cross between indica and japonica rice (Oryza sativa L.).Breed Sci 61, 380-388. |
[68] | Yano K, Yamamoto E, Aya K, Takeuchi H, Lo PC, Hu L, Yamasaki M, Yoshida S, Kitano H, Hirano K, Matsuoka M (2016). Genome-wide association study using whole- genome sequencing rapidly identifies new genes influencing agronomic traits in rice.Nat Genet 48, 927-934. |
[69] | Yu S, Li J, Xu C, Tan YF, Gao YJ, Li XH, Zhang Q, Saghai Maroof MA (1997). Importance of epitasis as the genetic basis of heterosis in an elite rice hybrid.Proc Natl Acad Sci USA 94, 9226-9231. |
[70] | Zhou G, Chen Y, Yao W, Zhang C, Xie W, Hua J, Xing Y, Xiao J, Zhang Q (2012). Genetic composition of yield heterosis in an elite rice hybrid.Proc Natl Acad Sci USA 109, 15847-15852. |
[71] | Zhu D, Zhou G, Xu C, Zhang Q (2016). Genetic components of heterosis for seedling traits in an elite rice hybrid analyzed using an immortalized F2 population.J Genet Genomics 43, 87-97. |
[72] | Zhuang J, Fan Y, Wu J, Xia Y, Zheng K (2000). Identification of over-dominance QTL in hybrid rice combinations.Hereditas 22, 205-208. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||