[1] |
胡忠孝, 田妍, 徐秋生 (2016). 中国杂交水稻推广历程及现状分析. 杂交水稻 2, 1-8.
|
[2] |
Birchler JA (2015). Heterosis: the genetic basis of hybrid vigour.Nat Plants 1, 15020.
|
[3] |
Birchler JA (2016). Hybrid vigour characterized.Nature 537, 620-621.
|
[4] |
Birchler JA, Veitia RA (2007). The gene balance hypothe- sis: from classical genetics to modern genomics.Plant Cell 19, 395-402.
|
[5] |
Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA (2010). Heterosis.Plant Cell 22, 2105-2112.
|
[6] |
Charlesworth B, Charlesworth D (2010). Elements of Evo- lutionary Genetics. Greenwood Village, Colorado: Roberts and Company. pp.182.
|
[7] |
Charlesworth D, Willis JH (2009). The genetics of inbreed- ing depression.Nat Rev Genet 10, 783-796.
|
[8] |
Darwin CR (1876). The Effects of Cross- and Self-fertiliza- tion in the Vegetable Kingdom. London: John Murray.
|
[9] |
Duvick DN (2001). Biotechnology in the 1930s: the deve- lopment of hybrid maize.Nat Rev Genet 2, 69-74.
|
[10] |
Garcia AAF, Wang S, Melchinger AE, Zeng ZB (2008). Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice.Genetics 180, 1707-1724.
|
[11] |
Goff SA (2011). A unifying theory for general multigenic he- terosis: energy efficiency, protein metabolism, and implica- tions for molecular breeding.New Phytol 189, 923-937.
|
[12] |
Groose R, Talbert L, Kojis W, Bingham E (1989). Progres- sive heterosis in autotetraploid alfalfa: studies using two types of inbreds.Crop Sci 29, 1173-1177.
|
[13] |
Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q (2003). Single-locus heterotic effects and dominance by domin- ance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid.Proc Natl Acad Sci USA 100, 2574-2579.
|
[14] |
Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009). High-throughput genotyping by whole- genome resequencing.Genome Res 19, 1068-1076.
|
[15] |
Huang X, Yang S, Gong J, Zhao Q, Feng Q, Zhan Q, Zhao Y, Li W, Cheng B, Xia J, Chen N, Huang T, Zhang L, Fan D, Chen J, Zhou C, Lu Y, Weng Q, Han B (2016). Genomic architecture of heterosis for yield traits in rice.Nature 537, 629-633.
|
[16] |
Huang X, Yang S, Gong J, Zhao Y, Feng Q, Gong H, Li W, Zhan Q, Cheng B, Xia J, Chen N, Hao Z, Liu K, Zhu C, Huang T, Zhao Q, Zhang L, Fan D, Zhou C, Lu Y, Weng Q, Wang Z, Li J, Han B (2015). Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis.Nat Commun 6, 6258.
|
[17] |
Jiang K, Liberatore KL, Park SJ, Alvarez JP, Lippman ZB (2013). Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLoS Genet 9, e1004043.
|
[18] |
Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX (2008). Genetic control of rice plant architecture under domestication.Nat Genet 40, 1365-1369.
|
[19] |
Jones DF (1917). Dominance of linked factors as a means of accounting for heterosis.Proc Natl Acad Sci USA 3, 310-312.
|
[20] |
Kaeppler S (2011). Heterosis: one boat at a time, or a rising tide?New Phytol 189, 900-902.
|
[21] |
Kaeppler S (2012). Heterosis: many genes, many mechan- isms—end the search for an undiscovered unifying theo- ry.ISRN Botany 2012, 682824.
|
[22] |
Krieger U, Lippman ZB, Zamir D (2010). The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet 42, 459-463.
|
[23] |
Li D, Huang Z, Song S, Xin Y, Mao D, Lv Q, Zhou M, Tian D, Tang M, Wu Q, Liu X, Chen T, Song X, Fu X, Zhao B, Liang C, Li A, Liu G, Li S, Hu S, Cao X, Yu J, Yuan L, Chen C, Zhu L (2016). Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase.Proc Natl Acad Sci USA 113, E6026-E6035.
|
[24] |
Li ZK, Luo L, Mei H, Wang D, Shu Q, Tabien R, Zhong D, Ying C, Stansel J, Khush G, Paterson A (2001). Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield.Genetics 158, 1737-1753.
|
[25] |
Lin Z, Griffith ME, Li X, Zhu Z, Tan L, Fu Y, Zhang W, Wang X, Xie D, Sun C (2007). Origin of seed shattering in rice (Oryza sativa L.).Planta 226, 11-20.
|
[26] |
Lippman ZB, Zamir D (2007). Heterosis: revisiting the magic.Trends Genet 23, 60-66.
|
[27] |
Luo L, Li ZK, Mei H, Shu Q, Tabien R, Zhong D, Ying C, Stansel J, Khush G, Paterson A (2001). Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield compo- nents.Genetics 158, 1755-1771.
|
[28] |
Schnable PS, Springer NM (2013). Progress toward understanding heterosis in crop plants.Annu Rev Plant Biol 64, 71-88.
|
[29] |
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Cao XF (2013). Targeted genome modification of crop plants using a CRISPR-Cas system.Nat Biotechnol 31, 686-688.
|
[30] |
Shull GH (1908). The composition of a field of maize.J Hered 4, 296-301.
|
[31] |
Sockness BA, Dudley J (1989). Performance of single and double cross autotetraploid maize hybrids with different levels of inbreeding.Crop Sci 29, 875-879.
|
[32] |
Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C (2008). Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40, 1360-1364.
|
[33] |
The3000 Rice Genome Project (2014). The 3 000 rice genomes project.Giga Sci 3, 7.
|
[34] |
Troyer AF (2006). Adaptedness and heterosis in corn and mule hybrids.Crop Sci 46, 528-543.
|
[35] |
Wang H, Xu X, Vieira FG, Xiao Y, Li Z, Wang J, Nielsen R, Chu C (2016). The power of inbreeding: NGS based GWAS of rice reveals convergent evolution during rice domestication.Mol Plant 9, 975-985.
|
[36] |
Wei G, Tao Y, Liu G, Chen C, Luo R, Xia H, Gan Q, Zeng H, Lu Z, Han Y, Li X, Song G, Zhai H, Peng Y, Li D, Xu H, Wei X, Cao M, Deng H, Xin Y, Fu X, Yuan L, Yu J, Zhu Z, Zhu L (2009). A transcriptomic analysis of super- hybrid rice LYP9 and its parents.Proc Natl Acad Sci USA 106, 7695-7701.
|
[37] |
Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice.Nat Genet 40, 761-767.
|
[38] |
Yu S, Li J, Xu C, Tan Y, Gao Y, Li X, Zhang Q, Maroof MS (1997). Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid.Proc Natl Acad Sci USA 94, 9226-9231.
|
[39] |
Zhang Q, Li J, Xue Y, Han B, Deng XW (2008). Rice 2020: a call for an international coordinated effort in rice func- tional genomics.Mol Plant 1, 715-719.
|
[40] |
Zhou G, Chen Y, Yao W, Zhang C, Xie W, Hua J, Xing Y, Xiao J, Zhang Q (2012). Genetic composition of yield heterosis in an elite rice hybrid.Proc Natl Acad Sci USA 109, 15847-15852.
|