植物学报 ›› 2017, Vol. 52 ›› Issue (2): 188-201.DOI: 10.11983/CBB16054
郑军1, 乔玲1, 赵佳佳1, 乔麟轶2, 张世昌2, 常建忠2, 汤才国3,,A;*(), 杨三维1,,A;*(
)
收稿日期:
2016-03-18
接受日期:
2016-08-04
出版日期:
2017-03-01
发布日期:
2017-04-05
通讯作者:
汤才国,杨三维
作者简介:
# 共同第一作者
基金资助:
Zheng Jun1, Qiao Ling1, Zhao Jiajia1, Qiao Linyi2, Zhang Shichang2, Chang Jianzhong2, Tang Caiguo3,*(), Yang Sanwei1,*(
)
Received:
2016-03-18
Accepted:
2016-08-04
Online:
2017-03-01
Published:
2017-04-05
Contact:
Tang Caiguo,Yang Sanwei
About author:
# Co-first authors
摘要: 开花是植物生长发育的重要过程。CCT家族基因在植物中广泛存在, 参与植物花期的调控过程。该文从粗山羊草(Aegilops tauschii)全基因组中分离出26个CCT基因, 它们分布于7对染色体上, 按照排列顺序将其命名为AetCCT1-26。AetCCT蛋白分子量介于14.9 kDa (AetCCT3)-83.2 kDa (AetCCT12)之间, 其中有25个蛋白包含完整的CCT保守结构域。系统发育分析显示, 12对粗山羊草/乌拉尔图小麦(Triticum urartu) CCT蛋白和9对粗山羊草/水稻(Oryza sativa) CCT蛋白为直系同源蛋白。通过公共数据的数字表达分析表明, AetCCT具有组织特异性和组成型2种表达形式, 其中AetCCT3、AetCCT4、AetCCT7及AetCCT9等9个基因在大部分组织中都有表达, 而AetCCT15、AetCCT21和AetCCT25等基因分别在种子、叶和根等少数组织中特异表达。AetCCT家族可以响应不同外源激素, 施用激素24小时和72小时后各成员对激素响应整体表现一致, 但不同成员对于不同激素的响应存在差异, 表明该家族成员在功能和行使方式等方面具有一定的多样性, 可能参与不同生长发育过程。光照条件影响AetCCT的表达, 说明光照和春化作用是影响与调控该家族基因表达的重要因素。研究结果有助于探索小麦(T. aestivum)进化、驯化和演变的规律, 以及认识重要农艺性状的形成与互作网络。
郑军, 乔玲, 赵佳佳, 乔麟轶, 张世昌, 常建忠, 汤才国, 杨三维. 粗山羊草CCT家族基因序列分析及激素响应. 植物学报, 2017, 52(2): 188-201.
Zheng Jun, Qiao Ling, Zhao Jiajia, Qiao Linyi, Zhang Shichang, Chang Jianzhong, Tang Caiguo, Yang Sanwei. Whole-genome Analysis of CCT Gene Family and Their Responses to Phytohormones in Aegilops tauschii. Chinese Bulletin of Botany, 2017, 52(2): 188-201.
图1 粗山羊草CCT家族基因的染色体定位和QTL定位左侧为遗传标尺, 黑色表示抽穗期QTL与AetCCT的共定位结果。
Figure 1 Chromosome mapping and QTL distribution of CCT genes in Aegilops tauschii genomeGenetic scale is indicated on the left side of chromosomes, the heading date QTLs are indicated on the right side of the chromosomes in black.
图2 粗山羊草AetCCT基因结构棒状结构代表外显子部分, 线状代表内含子部分。
Figure 2 Intron-exon structures of CCT genes in Aegilops tauschiiExons are represented by bars, introns are represented by connecting lines.
图5 CCT蛋白的系统发生乌拉尔图小麦和粗山羊草的CCT蛋白分别用三角形和圆形标注。
Figure 5 Phylogenesis of CCT proteinsCCT proteins of Triticum urartu and Aegilops tauschii were indicated by triangles and circles, respectively.
Gene | Length (bp) | CDS | Scaffold | Location | Mapped seq. | Chromosome |
---|---|---|---|---|---|---|
AetCCT1 | 2211 | AEGTA18365 | Scaffold4528 | 49937-52147 | AT1D0317 | 1DL |
AetCCT2 | 1836 | AEGTA21580 | Scaffold71509 | 42038-43873 | AT1D0523 | 1DL |
AetCCT3 | 1333 | AEGTA27323 | Scaffold97182 | 45576-47039 | AT1D0969 | 1DL |
AetCCT4 | 3096 | AEGTA10532 | Scaffold38896 | 10923-14018 | AT2D1124 | 2DS |
AetCCT5 | 2241 | AEGTA13911 | Scaffold30755 | 94901-97141 | AT2D1581 | 2DS |
AetCCT6 | 2157 | AEGTA00203 | Scaffold30755 | 129179-131557 | AT2D1581 | 2DS |
AetCCT7 | 2226 | AEGTA31460 | Scaffold77907 | 6990-9215 | AT3D2607 | 3DS |
AetCCT8 | 1134 | AEGTA06337 | Scaffold4745 | 59908-61041 | AT3D3130 | 3DL |
AetCCT9 | 2692 | AEGTA28548 | Scaffold28581 | 76532-79223 | AT4D3632 | 4DS |
AetCCT10 | 606 | AEGTA01709 | Scaffold50727 | 43106-43711 | AT4D3683 | 4DS |
AetCCT11 | 3208 | AEGTA21446 | Scaffold108 | 140572-143968 | AT4D3728 | 4DL |
AetCCT12 | 4521 | AEGTA31746 | Scaffold2864 | 19243-23723 | AT4D3886 | 4DL |
AetCCT13 | 2234 | AEGTA18304 | Scaffold98624 | 23875-26108 | BE403305 | 4DL |
AetCCT14 | 2878 | AEGTA13770 | Scaffold12030 | 253420-256287 | AT4D4194 | 4DL |
AetCCT15 | 603 | AEGTA33063 | Scaffold24714 | 5731-6333 | AT5D4519 | 5DL |
AetCCT16 | 1059 | AEGTA03508 | Scaffold185863 | 19051-20109 | AT5D4590 | 5DL |
AetCCT17 | 2404 | AEGTA04421 | Scaffold53469 | 30253-32656 | AT5D5030 | 5DL |
AetCCT18 | 738 | AEGTA32221 | Scaffold7166 | 12609-13346 | AT5D5201 | 5DL |
AetCCT19 | 3597 | AEGTA05461 | Scaffold106936 | 10967-14734 | AT6D5284 | 6DS |
AetCCT20 | 1188 | AEGTA21198 | Scaffold137524 | 2620-3965 | AT6D5798 | 6DL |
AetCCT21 | 2031 | AEGTA15475 | Scaffold71269 | 16605-18635 | AT7D6397 | 7DS |
AetCCT22 | 2781 | AEGTA31079 | Scaffold66553 | 48279-51059 | AT7D6416 | 7DS |
AetCCT23 | 3075 | AEGTA08066 | Scaffold6305 | 52570-55644 | AT7D6716 | 7DS |
AetCCT24 | 1521 | AEGTA13638 | Scaffold7100 | 34283-35803 | AT7D7002 | 7DL |
AetCCT25 | 742 | AEGTA03492 | Scaffold116052 | 16157-16929 | AT7D7027 | 7DL |
AetCCT26 | 2036 | AEGTA22574 | Scaffold16211 | 9228-11710 | AT7D7167 | 7DL |
表1 粗山羊草CCT家族基因
Table 1 CCT gene family in Aegilops tauschii
Gene | Length (bp) | CDS | Scaffold | Location | Mapped seq. | Chromosome |
---|---|---|---|---|---|---|
AetCCT1 | 2211 | AEGTA18365 | Scaffold4528 | 49937-52147 | AT1D0317 | 1DL |
AetCCT2 | 1836 | AEGTA21580 | Scaffold71509 | 42038-43873 | AT1D0523 | 1DL |
AetCCT3 | 1333 | AEGTA27323 | Scaffold97182 | 45576-47039 | AT1D0969 | 1DL |
AetCCT4 | 3096 | AEGTA10532 | Scaffold38896 | 10923-14018 | AT2D1124 | 2DS |
AetCCT5 | 2241 | AEGTA13911 | Scaffold30755 | 94901-97141 | AT2D1581 | 2DS |
AetCCT6 | 2157 | AEGTA00203 | Scaffold30755 | 129179-131557 | AT2D1581 | 2DS |
AetCCT7 | 2226 | AEGTA31460 | Scaffold77907 | 6990-9215 | AT3D2607 | 3DS |
AetCCT8 | 1134 | AEGTA06337 | Scaffold4745 | 59908-61041 | AT3D3130 | 3DL |
AetCCT9 | 2692 | AEGTA28548 | Scaffold28581 | 76532-79223 | AT4D3632 | 4DS |
AetCCT10 | 606 | AEGTA01709 | Scaffold50727 | 43106-43711 | AT4D3683 | 4DS |
AetCCT11 | 3208 | AEGTA21446 | Scaffold108 | 140572-143968 | AT4D3728 | 4DL |
AetCCT12 | 4521 | AEGTA31746 | Scaffold2864 | 19243-23723 | AT4D3886 | 4DL |
AetCCT13 | 2234 | AEGTA18304 | Scaffold98624 | 23875-26108 | BE403305 | 4DL |
AetCCT14 | 2878 | AEGTA13770 | Scaffold12030 | 253420-256287 | AT4D4194 | 4DL |
AetCCT15 | 603 | AEGTA33063 | Scaffold24714 | 5731-6333 | AT5D4519 | 5DL |
AetCCT16 | 1059 | AEGTA03508 | Scaffold185863 | 19051-20109 | AT5D4590 | 5DL |
AetCCT17 | 2404 | AEGTA04421 | Scaffold53469 | 30253-32656 | AT5D5030 | 5DL |
AetCCT18 | 738 | AEGTA32221 | Scaffold7166 | 12609-13346 | AT5D5201 | 5DL |
AetCCT19 | 3597 | AEGTA05461 | Scaffold106936 | 10967-14734 | AT6D5284 | 6DS |
AetCCT20 | 1188 | AEGTA21198 | Scaffold137524 | 2620-3965 | AT6D5798 | 6DL |
AetCCT21 | 2031 | AEGTA15475 | Scaffold71269 | 16605-18635 | AT7D6397 | 7DS |
AetCCT22 | 2781 | AEGTA31079 | Scaffold66553 | 48279-51059 | AT7D6416 | 7DS |
AetCCT23 | 3075 | AEGTA08066 | Scaffold6305 | 52570-55644 | AT7D6716 | 7DS |
AetCCT24 | 1521 | AEGTA13638 | Scaffold7100 | 34283-35803 | AT7D7002 | 7DL |
AetCCT25 | 742 | AEGTA03492 | Scaffold116052 | 16157-16929 | AT7D7027 | 7DL |
AetCCT26 | 2036 | AEGTA22574 | Scaffold16211 | 9228-11710 | AT7D7167 | 7DL |
图8 粗山羊草CCT家族基因在不同激素处理下的表达分析(A) 处理24小时; (B) 处理72小时
Figure 8 Hierarchical clustering of CCT domain genes under different phytohormones treatments in Aegilops tauschii(A) Phytohormones treatment for 24 h; (B) Phytohormones treatment for 72 h
图9 粗山羊草CCT家族基因在不同光照条件下的表达分析NV-LD: 未春化-长日照(16小时光照/8小时黑暗); NV-SD: 未春化-短日照(8小时光照/16小时黑暗); LD: 春化-长日照(16小时光照/8小时黑暗); SD: 春化-短日照(8小时光照/16小时黑暗)。
Figure 9 Expression of CCT domain genes under different light treatments in Aegilops tauschiiNV-LD: Long-day condition without vernalization (16 h light/8 h dark); NV-SD: Short-day condition without vernalization (8 h light/16 h dark); LD: Long-day condition after vernalization (16 h light/8 h dark); SD: Short-day condition after vernalization (8 h light/16 h dark).
[1] | 陈华夏, 申国境, 王磊, 邢永忠 (2010). 4个物种CCT结构域基因家族的序列进化分析. 华中农业大学学报 29, 669-676. |
[2] | Ando E, Ohnishi M, Wang Y, Matsushita T, Watanabe A, Hayashi Y, Fujii M, Ma JF, Inoue S, Kinoshita T (2013). TWIN SISTER OF FT,GIGANTEA, and CONSTANS ha- ve a positive but indirect effect on blue light-induced stom- atal opening in Arabidopsis. Plant Physiol 162, 1529-1538. |
[3] | Cho LH, Choi H, An G (2010). OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB.Plant J 63, 8-30. |
[4] | Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W (2007). Control of flowering time in temperate cereals: genes, domestication and sustainable productivity.J Exp Bot 58, 1231-1244. |
[5] | Cockram J, Thiel T, Steuernagel B, Stein N, Taudien S, Bailey PC, Sullivan DM (2012). Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae.PLoS One 7, e45307. |
[6] | Dennis ES, Peacock WJ (2009). Vernalization in cereals.J Biol 8, 57. |
[7] | Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controlsFT-like gene expression indepen- dently of Hd1. Genes Dev 18, 926-936. |
[8] | Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma- Bognár L, Nagy F, Millar AJ, Amasino RM (2002). TheELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana.Nature 419, 74-77. |
[9] | Gao H, Zheng XM, Fei GL, Chen J, Jin MN, Ren YL, Wu WX, Zhou KN, Sheng PK, Zhou F, Jiang L, Wang J, Zhang X, Guo XP, Wang JL, Cheng ZJ, Wu CY, Wang HY, Wan JM (2013). Ehd4 encodes a novel andOryza- genus-specific regulator of photoperiodic flowering in rice. PLoS Genet 9, e1003281. |
[10] | Grasser KD (2005). Emerging role for transcript elongation in plant development.Trends Plant Sci 10, 484-490. |
[11] | Harmon F, Imaizumi T, Gray WM (2008). CUL1 regulates TOC1 protein stability in the Arabidopsis circadian clock.Plant J 55, 568-579. |
[12] | Hicks KA, Albertson TM, Wagner DR (2001). EARLY FLO- WERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis.Plant Cell 13, 1281-1292. |
[13] | Hsu CY, Adams JP, No K, Liang H, Meilan R, Pechanova O, Barakat A, Carlson JE, Page GP, Yuceer C (2012). Overexpression ofCONSTANS homologs CO1 and CO2 fails to alter normal reproductive onset and fall bud set in woody perennial poplar. PLoS One 7, e45448. |
[14] | Kim J, Kim Y, Yeom M, Kim JH, Nam HG (2008). FIONA1 is essential for regulating period length in the Arabidopsis circadian clock. Plant Cell 20, 307-319. |
[15] | Kim SK, Park HY, Jang YH, Lee JH, Kim JK (2013). The sequence variation responsible for the functional difference between the CONSTANS protein, and the CONSTANS-like COL1 and COL2 proteins, resides mostly in the region encoded by their first exons. Plant Sci 199-200, 71-78. |
[16] | Lee YS, Jeong DH, Lee DY, Yi J, Ryu CH, Kim SL, Jeong HJ, Choi SC, Jin P, Yang J, Rademacher EH, Moller B, Lokerse AS, Llavata-Peris CI, van den Berg W, Weijers D (2011). A cellular expression map of the ArabidopsisAUXIN RESPONSE FACTOR gene family. Plant J 68, 597-606. |
[17] | Lolas IB, Himanen K, Gronlund JT, Lynggaard C, Houben A, Melzer M, Van Lijsebettens M, Grasser KD (2010). The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2.Plant J 61, 686-697. |
[18] | Panda S, Poirier GG, Kay SA (2002). Tej defines a role for poly(ADP-ribosyl)ation in establishing period length of the Arabidopsis circadian oscillator.Dev Cell 3, 51-61. |
[19] | Putterill J, Robson F, Lee K, Simon R, Coupland G (1995). TheCONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847-857. |
[20] | Riboni M, Galbiati M, Tonelli C, Conti L (2013). GIGANTEA enables drought escape response via abscisic acid- dependent activation of the florigens andSUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Plant Physiol 162, 1706-1719. |
[21] | Saito H, Ogiso-Tanaka E, Okumoto Y, Yoshitake Y, Izumi H, Yokoo T, Matsubara K, Hori K, Strader LC, Chen GL, Bartel B (2010). Ethylene directs auxin to control root cell expansion.Plant J 64, 874-884. |
[22] | Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Más P, Panda S, Kreps JA, Kay SA (2000). Cloning of the Arabidopsis clock geneTOC1, an autoregulatory response regulator homolog. Science 289, 768-771. |
[23] | Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007). The molecular basis of vernalization-induced flo- wering in cereals.Trends Plant Sci 12, 352-357. |
[24] | Vanneste S, Friml J (2009). Auxin: a trigger for change in plant development.Cell 136, 1005-1016. |
[25] | Wu F, Price B, Haider W, Seufferheld G, Nelson R, Hanzawa Y (2014). Functional and evolutionary characterization of theCONSTANS gene family in short-day photoperiodic flowering in soybean. PLoS One 9, e85754. |
[26] | Wu WX, Zheng XM, Lu GW, Zhong ZZ, Gao H, Chen LP, Wu CY, Wang HJ, Wang Q, Zhou KN, Wang JL, Wu FQ, Zhang X, Guo XP, Cheng ZJ, Lei CL, Lin QB, Jiang L, Wang HY, Ge S, Wan JM (2013). Association of functional nucleotide polymorphisms atDTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci USA 110, 2775-2780. |
[27] | Xiao J, Xu S, Li C, Xu Y, Xing L, Niu Y, Huan Q, Tang Y, Zhao C, Wagner D, Gao C, Chong K (2014). O-GlcNAc- mediated interaction between ?VER2 and ?TaGRP2 elicits ?TaVRN1 mRNA accumulation during vernalization in win- ter wheat. Nat Commun 5, 4572-4578. |
[28] | Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang QF (2008). Natural variation inGhd7 is an important regulator of hea- ding date and yield potential in rice. Nat Genet 40, 761-767. |
[29] | Yan L, Fu DL, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006). The wheat and barley vernalization geneVRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103, 19581-19586. |
[30] | Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakri- shna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004). The wheatVRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640-1644. |
[31] | Yang Q, Li Z, Li WQ, Ku LX, Wang C, Ye JR, Li K, Yang N, Li YP, Zhong T, Li JS, Chen YH, Yan JB, Yang XH, Xu ML (2013). CACTA-like transposable element inZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci USA 110, 16969-16974. |
[32] | Yano M, Inoue H, Tanisaka T (2012). Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor geneGhd7 under both short- and long-day conditions. Plant Cell Physiol 53, 717-728. |
[33] | Zhang L, Li QP, Dong HJ, He Q, Liang LW, Tan C, Han ZM, Yao W, Li GW, Zhao H, Xie WB, Xin YZ (2015). Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice. Sci Rep 5, 7663. |
[34] | Zheng J, Liu H, Wang YQ, Wang LF, Chang XP, Jing RL, Hao CY, Zhang XY (2014). TaTEF-7A, a transcript elongation factor gene, influences yield-related traits in bread wheat (Triticum aestivum L). J Exp Bot 65, 5351-5365. |
[1] | 吴科毅, 阮文达, 周棣锋, 陈庆春, 张承云, 潘新园, 余上, 刘阳, 肖荣波. 基于音节聚类分析的被动声学监测技术及其在鸟类监测中的应用[J]. 生物多样性, 2023, 31(1): 22370-. |
[2] | 于少帅, 林彩丽, 王圣洁, 张文鑫, 田国忠. 植原体tuf基因与其上游部分基因结构和相关基因启动子保守区域特征及活性分析[J]. 生物多样性, 2018, 26(7): 738-748. |
[3] | 于少帅, 徐启聪, 林彩丽, 王圣洁, 田国忠. 植原体遗传多样性研究现状与展望[J]. 生物多样性, 2016, 24(2): 205-215. |
[4] | 张曦, 侯小改, 郭大龙, 宋程威, 段亚宾. 利用iPBS技术克隆牡丹反转录转座子LTR序列[J]. 植物学报, 2014, 49(3): 322-330. |
[5] | 张根, 席贻龙, 薛颖昊, 胡忻, 项贤领, 温新利. 基于rDNA ITS序列探讨粉煤灰污染对萼花臂尾轮虫种群遗传多样性的影响[J]. 生物多样性, 2010, 18(3): 241-250. |
[6] | 姚戈 谢树莲. 串珠藻目分子系统学研究进展[J]. 植物学报, 2007, 24(02): 141-146. |
[7] | 张原 陈之端. 分子进化生物学中序列分析方法的新进展[J]. 植物学报, 2003, 20(04): 462-468. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||