植物学报 ›› 2016, Vol. 51 ›› Issue (2): 226-234.DOI: 10.11983/CBB15055 cstr: 32102.14.CBB15055
收稿日期:
2015-03-31
接受日期:
2015-09-21
出版日期:
2016-03-01
发布日期:
2016-03-31
通讯作者:
E-mail: 基金资助:
Ying Liu1, Baozhang Chen1,2,*(), Jing Chen2, Guang Xu2,3
Received:
2015-03-31
Accepted:
2015-09-21
Online:
2016-03-01
Published:
2016-03-31
Contact:
E-mail: 摘要: 基于2003-2007年千烟洲涡度相关通量塔观测的气象数据和蒸散发数据, 评价了常用的蒸散发模型模拟森林生态系统蒸散发的适用性, 包括Priestly-Taylor、Blaney-Criddle、Hargreaves-Samani、Jensen-Haise、Hamon、Turc、Makkink和Thornthwaite模型。 结果表明, 日尺度上Priestly-Taylor模型的模拟效果较好, 相关系数达0.953; 月尺度上Makkink模型的模拟效果较好, 相关系数达0.995; 而Thornthwaite模型在月尺度上模拟误差较大, 均方根误差与平均偏差分别为15.559和13.436; Jensen-Haise模型在日、月尺度上模拟效果均较差。采用偏相关法分析气象因子与蒸散发值的关系, 得出森林生态系统蒸散发驱动因子的贡献排序为: 辐射>温度>水气压>风速>土壤温度>相对湿度>白天时长, 即辐射对蒸散发的影响较为显著, 与基于辐射法的Priestly-Taylor和Makkink模型分别在日、月尺度上适用性较好的结论一致。
刘莹, 陈报章, 陈婧, 许光. 千烟洲森林生态系统蒸散发模拟模型的适用性. 植物学报, 2016, 51(2): 226-234.
Ying Liu, Baozhang Chen, Jing Chen, Guang Xu. Applicability of Evapotranspiration Simulation Models for Forest Ecosystems in Qianyanzhou. Chinese Bulletin of Botany, 2016, 51(2): 226-234.
Year | Screening interval (%) | ||||
---|---|---|---|---|---|
0.2-1.8 | 0.3-1.7 | 0.4-1.6 | 0.5-1.5 | 0.6-1.4 | |
2003 | 62.23 | 58.19 | 53.69 | 47.93 | 41.13 |
2004 | 64.88 | 60.73 | 55.70 | 49.72 | 42.61 |
2005 | 38.34 | 34.02 | 29.44 | 24.76 | 20.01 |
2006 | 51.16 | 45.75 | 40.35 | 34.44 | 28.12 |
2007 | 60.33 | 55.88 | 50.45 | 44.19 | 37.65 |
表1 2003-2007年按能量守恒原则筛选的数据可用量区间
Table 1 Available quantity of data for 2003-2007 based on the principle of conservation energy
Year | Screening interval (%) | ||||
---|---|---|---|---|---|
0.2-1.8 | 0.3-1.7 | 0.4-1.6 | 0.5-1.5 | 0.6-1.4 | |
2003 | 62.23 | 58.19 | 53.69 | 47.93 | 41.13 |
2004 | 64.88 | 60.73 | 55.70 | 49.72 | 42.61 |
2005 | 38.34 | 34.02 | 29.44 | 24.76 | 20.01 |
2006 | 51.16 | 45.75 | 40.35 | 34.44 | 28.12 |
2007 | 60.33 | 55.88 | 50.45 | 44.19 | 37.65 |
Month | Models | |||||||
---|---|---|---|---|---|---|---|---|
P-T | B-C | H-S | J-H | Ham | Tu | Ma | Th | |
1 | 1.213 | 0.353 | 0.003 | 2.151 | 0.078 | 0.022 | 0.550 | 8.113 |
2 | 0.991 | 0.350 | 0.003 | 1.225 | 0.068 | 0.019 | 0.520 | 8.113 |
3 | 0.888 | 0.381 | 0.003 | 0.998 | 0.070 | 0.018 | 0.482 | 8.113 |
4 | 0.790 | 0.415 | 0.003 | 0.901 | 0.070 | 0.020 | 0.546 | 8.113 |
5 | 0.863 | 0.499 | 0.003 | 0.931 | 0.077 | 0.024 | 0.668 | 8.113 |
6 | 0.872 | 0.526 | 0.003 | 0.914 | 0.076 | 0.026 | 0.707 | 8.113 |
7 | 0.932 | 0.606 | 0.004 | 0.995 | 0.080 | 0.031 | 0.862 | 0.940 |
8 | 0.883 | 0.561 | 0.004 | 0.993 | 0.077 | 0.029 | 0.816 | 0.940 |
9 | 0.886 | 0.526 | 0.004 | 1.073 | 0.080 | 0.025 | 0.722 | 8.113 |
10 | 0.929 | 0.407 | 0.003 | 1.072 | 0.068 | 0.021 | 0.625 | 8.113 |
11 | 1.072 | 0.357 | 0.003 | 1.248 | 0.065 | 0.020 | 0.604 | 8.113 |
12 | 1.204 | 0.357 | 0.003 | 2.069 | 0.076 | 0.020 | 0.561 | 8.113 |
Sd | 0.1353 | 0.0928 | 0.0004 | 0.4329 | 0.0051 | 0.0042 | 0.1192 | 2.792 |
Mean | 0.9602 | 0.4448 | 0.0031 | 1.2142 | 0.0737 | 0.0230 | 0.6385 | 6.917 |
CV (%) | 14.089 | 20.874 | 13.547 | 35.653 | 6.948 | 18.254 | 18.671 | 40.363 |
表2 采用最小二乘法计算模型参数α值及其标准差(Sd)、均值(Mean)和变异系数(CV)
Table 2 Model parameter (α), standard deviation (Sd), mean and coefficient variation (CV) using the least square method
Month | Models | |||||||
---|---|---|---|---|---|---|---|---|
P-T | B-C | H-S | J-H | Ham | Tu | Ma | Th | |
1 | 1.213 | 0.353 | 0.003 | 2.151 | 0.078 | 0.022 | 0.550 | 8.113 |
2 | 0.991 | 0.350 | 0.003 | 1.225 | 0.068 | 0.019 | 0.520 | 8.113 |
3 | 0.888 | 0.381 | 0.003 | 0.998 | 0.070 | 0.018 | 0.482 | 8.113 |
4 | 0.790 | 0.415 | 0.003 | 0.901 | 0.070 | 0.020 | 0.546 | 8.113 |
5 | 0.863 | 0.499 | 0.003 | 0.931 | 0.077 | 0.024 | 0.668 | 8.113 |
6 | 0.872 | 0.526 | 0.003 | 0.914 | 0.076 | 0.026 | 0.707 | 8.113 |
7 | 0.932 | 0.606 | 0.004 | 0.995 | 0.080 | 0.031 | 0.862 | 0.940 |
8 | 0.883 | 0.561 | 0.004 | 0.993 | 0.077 | 0.029 | 0.816 | 0.940 |
9 | 0.886 | 0.526 | 0.004 | 1.073 | 0.080 | 0.025 | 0.722 | 8.113 |
10 | 0.929 | 0.407 | 0.003 | 1.072 | 0.068 | 0.021 | 0.625 | 8.113 |
11 | 1.072 | 0.357 | 0.003 | 1.248 | 0.065 | 0.020 | 0.604 | 8.113 |
12 | 1.204 | 0.357 | 0.003 | 2.069 | 0.076 | 0.020 | 0.561 | 8.113 |
Sd | 0.1353 | 0.0928 | 0.0004 | 0.4329 | 0.0051 | 0.0042 | 0.1192 | 2.792 |
Mean | 0.9602 | 0.4448 | 0.0031 | 1.2142 | 0.0737 | 0.0230 | 0.6385 | 6.917 |
CV (%) | 14.089 | 20.874 | 13.547 | 35.653 | 6.948 | 18.254 | 18.671 | 40.363 |
图1 观测值与模拟值多年日均变化对比 (A)-(G) 分别为P-T、B-C、H-S、J-H、Ham、Tu和Ma模型的拟合图像。横坐标表示观察值; 纵坐标表示模型模拟值, R2为拟合优度。
Figure 1 Daily evapotrans piration (ET) observation and ET simulation on average of years (A)-(G) The fitting prctures of P-T, B-C, H-S, J-H, Ham, Tu and Ma model, respectively. Abscissa represents observation; Ordinate represents simulation; R2 represents goodness of fit.
Model | RMSE | MBE | R |
---|---|---|---|
P-T | 0.456 | 0.355 | 0.953** |
B-C | 0.458 | 0.342 | 0.917** |
H-S | 0.453 | 0.343 | 0.927** |
J-H | 0.512 | 0.399 | 0.911** |
Ham | 0.439 | 0.332 | 0.925** |
Tu | 0.476 | 0.362 | 0.910** |
Ma | 0.467 | 0.348 | 0.913** |
表3 日均观测值与模拟值的相关性分析
Table 3 Correlation analysis of daily evapotranspiration (ET) observation and ET simulation on average
Model | RMSE | MBE | R |
---|---|---|---|
P-T | 0.456 | 0.355 | 0.953** |
B-C | 0.458 | 0.342 | 0.917** |
H-S | 0.453 | 0.343 | 0.927** |
J-H | 0.512 | 0.399 | 0.911** |
Ham | 0.439 | 0.332 | 0.925** |
Tu | 0.476 | 0.362 | 0.910** |
Ma | 0.467 | 0.348 | 0.913** |
Coefficient | Obs | Model | |||||||
---|---|---|---|---|---|---|---|---|---|
P-T | B-C | H-S | J-H | Ham | Tu | Ma | Th | ||
Sd | 33.337 | 34.987 | 33.174 | 34.383 | 36.171 | 33.158 | 33.962 | 33.165 | 48.385 |
Mean | 68.045 | 65.514 | 66.629 | 64.011 | 63.319 | 65.891 | 66.078 | 66.701 | 64.885 |
CV (%) | 48.992 | 57.858 | 49.790 | 53.714 | 57.125 | 50.322 | 51.397 | 49.722 | 74.570 |
表4 蒸散发观测值与模拟值的多年月变化(mm·m-1)
Table 4 Monthly change of evapotranspiration (ET) observation and ET simulation of years (mm·m-1)
Coefficient | Obs | Model | |||||||
---|---|---|---|---|---|---|---|---|---|
P-T | B-C | H-S | J-H | Ham | Tu | Ma | Th | ||
Sd | 33.337 | 34.987 | 33.174 | 34.383 | 36.171 | 33.158 | 33.962 | 33.165 | 48.385 |
Mean | 68.045 | 65.514 | 66.629 | 64.011 | 63.319 | 65.891 | 66.078 | 66.701 | 64.885 |
CV (%) | 48.992 | 57.858 | 49.790 | 53.714 | 57.125 | 50.322 | 51.397 | 49.722 | 74.570 |
图2 观测值与模拟值多年月均蒸散发关系对比 (A) 观测值与P-T模型模拟值月蒸散发变化; (B) 观测值与B-C模型模拟值月蒸散发变化; (C) 观测值与H-S模型模拟值月蒸散发变化; (D) 观测值与J-H模型模拟值月蒸散发变化; (E) 观测值与Ham模型模拟值月蒸散发变化; (F) 观测值与Tu模型模拟值月蒸散发变化; (G) 观测值与Ma模型模拟值月蒸散发变化; (H) 观测值与Th模型模拟值月蒸散发变化
Figure 2 Comparison of monthly evapotranspiration (ET) observation and ET simulation of years on average (A) The picture of monthly variation between observation and P-T model simulation; (B) The picture of monthly variation between observation and B-C model simulation; (C) The picture of monthly variation between observation and H-S model simulation; (D) The picture of monthly variation between observation and J-H model simulation; (E) The picture of monthly variation between observation and Ham model simulation; (F) The picture of monthly variation between observation and Tu model simulation; (G) The picture of monthly variation between observation and Ma model simulation; (H) The picture of monthly variation between observation and Th model simulation
Model | RMSE | MBE | R |
---|---|---|---|
P-T | 6.337 | 5.621 | 0.994** |
B-C | 3.752 | 3.179 | 0.994** |
H-S | 6.198 | 5.685 | 0.990** |
J-H | 7.203 | 6.306 | 0.990** |
Ham | 4.468 | 3.881 | 0.992** |
Tu | 3.931 | 3.632 | 0.995** |
Ma | 3.495 | 2.999 | 0.995** |
Th | 15.559 | 13.436 | 0.992** |
表5 模拟值与观测值多年月均蒸散发关系
Table 5 Monthly evapotranspiration (ET) observation and ET simulation on average of years
Model | RMSE | MBE | R |
---|---|---|---|
P-T | 6.337 | 5.621 | 0.994** |
B-C | 3.752 | 3.179 | 0.994** |
H-S | 6.198 | 5.685 | 0.990** |
J-H | 7.203 | 6.306 | 0.990** |
Ham | 4.468 | 3.881 | 0.992** |
Tu | 3.931 | 3.632 | 0.995** |
Ma | 3.495 | 2.999 | 0.995** |
Th | 15.559 | 13.436 | 0.992** |
Rn | Ts | Ta | RH | Ws | Pvapor | Rainfall | n | |
---|---|---|---|---|---|---|---|---|
R | 0.951** | 0.877** | 0.900** | -0.326** | 0.371** | 0.891** | 0.061 | 0.799** |
表6 气象因子与观测值的关系(R)
Table 6 Correlation coefficient (R) of meteorological factor and evapotranspiration (ET) observation under Person correlation test
Rn | Ts | Ta | RH | Ws | Pvapor | Rainfall | n | |
---|---|---|---|---|---|---|---|---|
R | 0.951** | 0.877** | 0.900** | -0.326** | 0.371** | 0.891** | 0.061 | 0.799** |
Rn | Ts | Ta | RH | Ws | Pvapor | n | |
---|---|---|---|---|---|---|---|
R | 0.733** | 0.300** | -0.412** | -0.206** | 0.308** | 0.334** | -0.24 |
表7 气象因子与观测值偏相关分析(R)
Table 7 Correlation coefficient of meteorological factor and evapotranspiration (ET) observation under partial correlation analysis
Rn | Ts | Ta | RH | Ws | Pvapor | n | |
---|---|---|---|---|---|---|---|
R | 0.733** | 0.300** | -0.412** | -0.206** | 0.308** | 0.334** | -0.24 |
[1] | 程根伟, 余新晓, 赵玉涛, 周杨明, 罗辑 (2003). 贡嘎山亚高山森林带蒸散特征模拟研究. 北京林业大学学报 25(1), 23-27. |
[2] | 杜加强, 熊珊珊, 刘成程, 郭杨, 舒俭民, 张林波 (2013). 黄河上游地区几种参考作物蒸散量计算方法的适用性比较. 干旱区地理 36, 831-840. |
[3] | 胡兴波, 芦新建, 董梅, 连利叶, 贺康宁 (2013). 简化参照作物蒸散量(ET0)计算公式在青海省高寒区的适用性分析. 西北农林科技大学学报(自然科学版) 41(11),201-208. |
[4] | 李菲菲, 饶良懿, 吕琨珑, 李会杰, 宋丹丹 (2012). Priestley- Taylor模型参数修正及在蒸散发估算中的应用. 浙江农林大学学报 30, 748-754. |
[5] | 李玉霖, 崔建垣, 张铜会 (2002). 参考作物蒸散量计算方法的比较研究. 中国沙漠 22, 372-376. |
[6] | 王昊, 许士国, 孙砳石 (2007). 扎龙湿地参照作物蒸散发估算的经验模型. 水科学进展 18, 246-251. |
[7] | 王梅, 王建波 (2005). 森林内气象因素和蒸散发的观测实验. 黑龙江水专学报 32(2), 21-22, 25. |
[8] |
杨贵军, 黄文江, 王纪华, 邢著荣 (2010). 多源多角度遥感数据反演森林叶面积指数方法. 植物学报 45, 566-578.
DOI |
[9] | 张晓琳, 熊立华, 林琳, 龙海峰 (2012). 五种潜在蒸散发公式在汉江流域的应用. 干旱区地理 35, 229-237. |
[10] | Allen RG, Pereira LS, Dirk R, Martin S (1998). Crop Evapotranspiration:Guidelines for Computing Crop Water Requirements. Rome: Natural Resources Management and Environment Press. pp. 56. |
[11] | Blaney HF, Criddle WD (1962). Determining consumptive use and irrigation water requirements. Technical Bull 25, 369-373. |
[12] | Bonan GB (2008). Ecological Climatology:Concepts and Applications. Cambridge: Cambridge University Press. pp. 31. |
[13] | Chen B, Ge Q, Fu D, Yu G, Sun X, Wang S, Wang H (2010). A data-model fusion approach for upscaling gross ecosystem productivity to the landscape scale based on remote sensing and flux footprint modelling. Biogeo- sciences 7, 2943-2958. |
[14] | Chen J, Chen BZ, Black TA, Innes JL, Wang GY, Kiely G, Hirano T, Wohlfahrt G (2013). Comparison of terres- trial evapotranspiration estimates using the mass transfer and Penman-Monteith equations in land surface models. J Geophys Res 118, 1715-1731. |
[15] | Douglas E, Jennifer MJ, Summer DS, Ram LR (2009). A comparison of models for estimating potential evapo- transpiration for Florida land cover types. J Hydrol 373, 366-376. |
[16] | Fisher JB, Whittaker RJ, Malhi Y (2011). ET come home: potential evapotranspiration in geographical ecology. Global Ecol Biogeogr 20, 1-18. |
[17] | Hargreaves GH, Samani ZA (1985). Reference crop evapo- transpiration from temperature. Appl Eng Agric 1, 96-99. |
[18] | Lu JB, Sun G, Mcnulty SG, Amatya DM (2005). A com- parison of six potential evapotranspiration methods for regional use in the southeastern US. J Am Water Works Assn 41, 621-633. |
[19] | Loukas A, Vasiliades L, Domenikiotis C, Dalezios NR (2005). Basin-wide actual evapotranspiration estimation using NOAA/AVHRR satellite data. Phys Chem Earth 30, 69-79. |
[20] | Pereira AR, Pruitt WO (2004). Adaptation of the Thorn- thwaite scheme for estimating daily reference evapora- tion. Agr Water Manage 66, 251-257. |
[21] | Priestly CHB, Taylor RJ (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2), 81-92. |
[22] | Trajkovic S, Kolakovic S (2009). Evaluation of reference evapotranspiration equations under humid conditions. Water Resour Manag 23, 3057-3067. |
[23] | Xu CY, Singh VP (2005). Evaluation of three compl- ementary relationship evapotranspiration models by water balance approach to estimate actual regional evapo- transpiration in different climatic regions. J Hydrol 308, 105-121. |
[24] | Zha TS, Barr AG, van der Kamp G, Black TA, McCaughey JH, Flanagan LB (2010). Interannual variation of evapo- transpiration from forest and grassland ecosystems in western Canada in relation to drought. Agric For Meteorol 150, 1476-1484. |
[1] | 何欣怡, 潘玉梅, 祝燕, 陈佳仪, 张思榕, 张乃莉. 暖温带森林外生菌根树种优势和植物多样性对土壤氮素周转的影响[J]. 生物多样性, 2024, 32(9): 24173-. |
[2] | 王秀英, 陈奇, 杜华礼, 张睿, 马红璐. 基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究[J]. 植物生态学报, 2023, 47(7): 912-921. |
[3] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[4] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[5] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[6] | 冯印成, 王云琦, 王玉杰, 王凯, 王松年, 王杰帅. 重庆缙云山针阔混交林水汽通量特征及其影响因子[J]. 植物生态学报, 2022, 46(8): 890-903. |
[7] | 黄樱, 陈挚, 石喆, 熊博文, 鄢春华, 邱国玉. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022, 46(3): 300-310. |
[8] | 李红琴, 张亚茹, 张法伟, 马文婧, 罗方林, 王春雨, 杨永胜, 张雷明, 李英年. 增强回归树模型在青藏高原高寒灌丛通量数据插补中的应用[J]. 植物生态学报, 2022, 46(12): 1437-1447. |
[9] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[10] | 王彦兵, 游翠海, 谭星儒, 陈波宇, 许梦真, 陈世苹. 中国北方干旱半干旱区草原生态系统能量平衡闭合的季节和年际变异[J]. 植物生态学报, 2022, 46(12): 1448-1460. |
[11] | 王嘉童, 牛春跃, 胡天宇, 李文楷, 刘玲莉, 郭庆华, 苏艳军. 三维辐射传输模型在森林生态系统研究中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1200-1218. |
[12] | 李鑫豪, 田文东, 李润东, 靳川, 蒋燕, 郝少荣, 贾昕, 田赟, 查天山. 北京松山落叶阔叶林生态系统水热通量对环境因子的响应[J]. 植物生态学报, 2021, 45(11): 1191-1202. |
[13] | 江南, 徐卫华, 赵娟娟, 肖燚. 生态系统原真性概念及评价方法: 以长白山地区为例[J]. 生物多样性, 2021, 29(10): 1288-1294. |
[14] | 魏鑫磊, 李姝, 窦文俊, 亓宝, 王琦, 李玉. 甘肃省祁连山国家级自然保护区的黏菌物种多样性[J]. 生物多样性, 2021, 29(1): 65-71. |
[15] | 陈世苹, 游翠海, 胡中民, 陈智, 张雷明, 王秋凤. 涡度相关技术及其在陆地生态系统通量研究中的应用[J]. 植物生态学报, 2020, 44(4): 291-304. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||