Chin Bull Bot ›› 2018, Vol. 53 ›› Issue (3): 313-321.doi: 10.11983/CBB17193

Special Issue: Medicinal Plant

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Analysis on Genetic Diversity of Cynomorium songaricum by ITS Sequence

Ren Mengyun1,2, Du Leshan1, Chen Yanjun1,2, Zhang Dun2, Shen Qi2, Guan Xiao1,*(), Zhang Yindong2,*()   

  1. 1Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    2College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
  • Received:2017-10-18 Accepted:2018-04-30 Online:2018-09-11 Published:2018-05-01
  • Contact: Guan Xiao,Zhang Yindong;


To elucidate the genetic structure and genetic diversity of Cynomorium songaricum, modern molecular biology techniques at the DNA level were used to study the genetic structure of 188 C. songaricum individuals from 18 wild populations in the Hexi Corridor Region of Gansu and Qinghai. After alignment, all amplified sequence lengths were 687 bp. The 687 bp ITS sequence detected 7 mutation sites in 188 individuals, defining 9 haplotypes. Processing these 9 haplotype sequences led to a data matrix for calculating the haplotype diversity (Hd=0.294 20) and nucleotide diversity (π=0.000 49). In the haplotype network map, H1 is located in the center and distributed in all populations, and is the ancient and core haplotype. AMOVA revealed that the variation in C. songaricum mainly occurs in populations. According to the genetic differentiation coefficient and Mantel test of ITS sequences, we found no significant relation between genetic and geographic distances, so the current distribution of C. songaricum represents the fragmentation product in recent time. Detection of historical expansion of populations showed that the Tajima’s D test rejected a neutral mutation evolution, and the population expansion history or gene locus is under negative selection pressure, so the null hypothesis cannot be ruled out. Our study provides molecular evidence for the classification system, identification and protection measures of C. songaricum.

Key words: Cynomorium songaricum, ITS, genetic diversity, neutral hypothesis

Table 1

Location of 18 populations of Cynomorium songaricum"

Sample No. Location Longitude E (°) Latitude N (°) Height (m) Number
R1 Zhangye, Gansu 102.522 36.822 1803 11
R2 Minqin, Gansu 100.772 39.223 1370 17
R3 Jinchang, Gansu 102.54 38.44 1466 7
R4 Sandan, Gansu 101.118 38.897 2020 10
R5 Gaotai, Gansu 99.086 39.787 1339 11
R6 Sunan, Gansu 99.176 39.604 1395 10
R7 Sunan, Gansu 99.474 39.445 1391 12
R8 Jiuquan, Gansu 98.55 40.3 1232 4
R9 Yumen, Gansu 97.196 40.516 1395 10
R10 Guazhou, Gansu 95.585 40.212 1343 11
R11 Dunhuang, Gansu 94.583 40.368 1033 11
R12 Subei, Gansu 96.619 39.397 2355 10
R13 Delingha, Qinghai 97.334 37.206 2780 11
R14 Geermu, Qinghai 92.839 36.701 2790 7
R15 Dulan, Qinghai 98.164 36.476 2972 12
R16 Wulan, Qinghai 98.622 36.458 2917 12
R17 Gonghe, Qinghai 100.183 36.446 2904 11
R18 Guide, Qinghai 101.639 36.219 2389 11

Table 2

Variable sites of ITS sequence haplotypes of Cynomorium songaricum"

Haplotype Variable sites Abundance
63 86 197 274 421 605 623
H1 G G G T G C G 143
H2 A G G T G C T 3
H3 G A G T G C G 1
H4 G A G T G G G 2
H5 A G G T G C G 26
H6 G G A T G C G 5
H7 G G A G G C G 1
H8 G G G T G G G 4
H9 G G G T A C G 3

Table 3

Haplotype diversity and composition of Cynomorium songaricum from18 populations"

Population code Samples Haptotypes Hd
R1 11 H1, H2, H3, H4 0.25974
R2 17 H1, H5, H6 0.11586
R3 7 H1, H5 0.43956
R4 10 H1, H2, H5 0.42632
R5 11 H1, H6 0.24675
R6 10 H1, H7, H8 0.19474
R7 12 H1, H5 0.08333
R8 4 H1, H5, H9 0.60714
R9 10 H1, H8 0.10000
R10 11 H1, H5, H8 0.17749
R11 11 H1, H4, H6 0.17749
R12 10 H1 0
R13 11 H1 0
R14 7 H1, H6 0.14286
R15 12 H1, H9 0.08333
R16 12 H1, H9 0.08333
R17 11 H1, H8 0.09091
R18 11 H1 0
Total 188 0.29420

Figure 1

Strict consensus tree based on the ITS sequence of Cynomorium songaricumLength=784, CI=0.949 0, RI=0.911 7, RCI=0.865 2. The num- bers on the branch represent the support rate of MP/ML/BI, respectively."

Figure 2

Haplotype network based on ITS sequence of Cynomorium songaricum from 18 populationsThe size of circles are proportional to the relative frequency of the haplotype; Different colors represent different populations of Cynomorium songaricum."

Table 4

Genetic structural parameters of Cynomorium songaricum"

Sequence HS (SE) HT (SE) GST (SE) NST (SE)
ITS 0.179 (0.0390) 0.277 (0.0820) 0.353 (0.1914) 0.408 (0.2038)

Table 5

Analysis of molecular variance for ribosome haplotypes of Cynomorium songaricum"

Source of variation df Sum of squares Variance components Percentage FST P
Among populations 17 28.833 0.07689 Va 44.57 0.44566 <0.001*
Within populations 358 34.239 0.09564 Vb 55.43
Total 375 63.072 0.17253

Figure 3

Mismatch distribution analysis for the populations of Cynomorium songaricum based on ITS sequenceCylindricality represents the expected distribution of variation sites under the population expansion model; dotted line represents the actual distribution of variation sites."

[1] 陈贵林, 岳鑫, 刘广达 (2011). 锁阳愈伤组织体系的建立及遗传多样性研究. 见: 第十届全国药用植物及植物药学术研讨会论文集. 昆明: 中国植物学会. pp. 26.
[2] 陈叶, 高海宁, 高宏, 韩多宏, 罗光宏, 张勇 (2013). 甘肃河西走廊道地药材锁阳的分布和利用. 中兽医医药杂志 32, 77-79.
[3] 郝媛媛, 岳利军, 康建军, 王锁民 (2012). “沙漠人参”肉苁蓉和锁阳研究进展. 草业学报21, 286-293.
[4] 黄建峰, 李朗, 李捷 (2016). 樟属植物ITS序列多态性分析. 植物学报 51, 609-619.
[5] 李洪芹, 马昌豪, 彭艳丽 (2015). 山东玫瑰花核糖体rDNA ITS序列分析初步探究. 天津中医药大学学报 34, 104-107.
[6] 李金博, 高丽华, 周美亮, 李诗刚, 彭昭良, 吴燕民 (2016). 15个白三叶品种的ISSR和ITS遗传多样性分析. 草业科学 33, 1147-1153.
[7] 李学营, 彭建营, 白瑞霞 (2005). 基于核rDNA的ITS序列在种子植物系统发育研究中的应用. 西北植物学报 25, 829-834.
[8] 宁淑萍, 颜海飞, 郝刚, 葛学军 (2008). 植物DNA条形码研究进展. 生物多样性 16, 417-425.
[9] 宋宇婷, 马大龙, 隋心, 穆立蔷 (2011). 黑龙江、吉林地区松茸ITS序列遗传多样性分析. 中国酿造 30, 133-136.
[10] 岳鑫, 段园园, 陈贵林 (2013). 锁阳愈伤组织诱导和增殖及不定根分化. 植物生理学报 49, 1421-1426.
[11] 中国科学院中国植物志编辑委员会 (2000). 中国植物志(第五十三卷第二分册). 北京: 科学出版社. pp. 152-154.
[12] Avise JC (2000).Phylogeography: the History and Formation of Species. Cambridge: Harvard University Press. pp. 134-135.
[13] Bandelt HJ, Forster P, Röhl A (1999). Median-joining networks for inferring intraspecific phylogenies.Mol Biol Evol 16, 37-48.
[14] Barkman TJ, McNeal JR, Lim SH, Coat G, Croom HB, Young ND, Depamphilis CW (2007). Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants.BMC Evol Biol 7, 248.
[15] Cibrián-Jaramillo A, Bacon CD, Garwood NC, Bateman RM, Thomas MM, Russell S, Bailey CD, Hahn WJ, Bridgewater SG, DeSalle R (2009). Population genetics of the understory fishtail palm Chamaedorea ernestiau- gusti in Belize: high genetic connectivity with local differen- tiation. BMC Genet 10, 65.
[16] Cooke DEL, Duncan JM (1997). Phylogenetic analysis of Phytophthora species based on ITS1 and ITS2 sequences of the ribosomal RNA gene repeat. Mycol Res 101, 667-677.
[17] Cosacov A, Johnson LA, Paiaro V, Cocucci AA, Córdoba FE, Sérsic AN, Crisci J (2013). Precipitation rather than temperature influenced the phylogeography of the endemic shrub Anarthrophyllum desideratum in the Patagonian steppe. J Biogeogra 40, 168-182.
[18] Excoffier L (2004). Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model.Mol Ecol 13, 853-864.
[19] Excoffier L, Laval G, Schneider S (2007). Arlequin (version 3.0): an integrated software package for population genetics data analysis.Evol Bioinform 1, 47-50.
[20] Excoffier L, Smouse PE, Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data.Genetics 131, 479-491.
[21] Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/ 98/NT. In: Information Retrieval Ltd., Nucleic Acids Symposium Series, vol. 41. London: IRL Press. pp. 95-98.
[22] Hou DY, Song JY, Shi LC, Ma XC, Xin TY, Han JP, Xiao W, Sun ZY, Cheng RY, Yao H (2013a). Stability and accuracy assessment of identification of traditional Chinese materia medica using DNA barcoding: a case study on Flos Lonicerae Japonicae.Biomed Res Int 2013, 549037.
[23] Hou DY, Song JY, Yao H, Han JP, Pang XH, Shi LC, Wang XC, Chen SL (2013b). Molecular identification of corni fructus and its adulterants by ITS/ITS2 sequences.Chin J Nat Med 11, 121-127.
[24] Kumar S, Stecher G, Tamura K (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger data- sets.Mol Biol Evol 33, 1870-1874.
[25] Lahaye R, Van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, Barraclough TG, Savolainen V (2008). DNA barcoding the floras of biodiversity hotspots.Proc Natl Acad Sci USA 105, 2923-2928.
[26] Librado P, Rozas J (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Bioinformatics 25, 1451-1452.
[27] Liu GD, Chen GL, Li W, Li CX (2013). Genetic and phytochemical diversities of Cynomorium songaricum Rupr. in Northwest China indicated by ISSR markers and HPLC- fingerprinting. Biochem Syst Ecol 48, 34-41.
[28] Newmaster SG, Fazekas AJ, Steeves RAD, Janovec J (2008). Testing candidate plant barcode regions in the My- risticaceae.Mol Ecol Res 8, 480-490.
[29] Nickrent DL, Der JP, Anderson FE (2005). Discovery of the photosynthetic relatives of the “Maltese mushroom” Cynomorium. BMC Evol Biol 5, 38.
[30] Pons O, Petit RJ (1996). Measwring and testing genetic differentiation with ordered Versus unordered alleles. Genetics 144, 1237-1245.
[31] Rogers AR, Harpending H (1992). Population growth makes waves in the distribution of pairwise genetic differences.Mol Biol Evol 9, 552-569.
[32] Slatkin M, Hudson RR (1991). Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations.Genetics 129, 555-562.
[33] Song JY, Shi LC, Li DZ, Sun YZ, Niu YY, Chen ZD, Luo HM, Pang XH, Sun ZY, Liu C, Lv AP, Deng YP, Larson-Rabin Z, Wilkinson M, Chen SL (2012). Extensive pyrosequencing reveals frequent intra-genomic variations of internal transcribed spacer regions of nuclear ribosomal DNA.PLoS One 7, e43971.
[34] Swafford DL (2002). PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4.0 10b. Sunderland, MA:Sinauer Associates.
[35] Zhang ZH, Li CQ, Li JH (2009). Phylogenetic placement of Cynomorium in Rosales inferred from sequences of the inverted repeat region of the chloroplast genome. J Syst Evol 47, 297-304.
[1] QIN Hao,ZHANG Yin-Bo,DONG Gang,ZHANG Feng. Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China [J]. Chin J Plant Ecol, 2019, 43(9): 762-773.
[2] XU Jin-Shi,CHAI Yong-Fu,LIU Xiao,YUE Ming,GUO Yao-Xin,KANG Mu-Yi,LIU Quan-Ru,ZHENG Cheng-Yang,JI Cheng-Jun,YAN Ming,ZHANG Feng,GAO Xian-Ming,WANG Ren-Qing,SHI Fu-Chen,ZHANG Qin-Di,WANG Mao. Community assembly, diversity patterns and distributions of broad-leaved forests in North China [J]. Chin J Plant Ecol, 2019, 43(9): 732-741.
[3] LI Qun, ZHAO Cheng-Zhang, WANG Ji-Wei, WEN Jun, LI Zi-Qin, MA Jun-Yi. Morphological and photosynthetic physiological characteristics of Saussurea salsa in response to flooding in salt marshes of Xiao Sugan Lake, Gansu, China [J]. Chin J Plant Ecol, 2019, 43(8): 685-696.
[4] CHEN Xu, LIU Hong-Kai, ZHAO Chun-Zhou, WANG Qiang, WANG Yan-Ping. Responses of foliar anatomical traits to soil conditions in 11 tree species on coastal saline-alkali sites of Shandong, China [J]. Chin J Plant Ecol, 2019, 43(8): 697-708.
[5] FU Yi-Wen, TIAN Da-Shuan, WANG Jin-Song, NIU Shu-Li, ZHAO Ken-Tian. Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands [J]. Chin J Plant Ecol, 2019, 43(7): 566-575.
[6] XU Hao, LIU Ming-Guo, DONG Sheng-Jun, WU Yue-Liang, ZHANG Hao-Kai. Diversity and geographical variations of germplasm resources of Armeniaca mandshurica [J]. Chin J Plant Ecol, 2019, 43(7): 585-600.
[7] Gu Hanjiao, Zhang Cancan, Wang Jinsong, Shi Xuewen, Xia Ruixue, Liu Bin, Chen Fusheng, Bu Wensheng. Variation in basic morphological and functional traits of Chinese bamboo [J]. Biodiv Sci, 2019, 27(6): 585-594.
[8] ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis [J]. Chin J Plant Ecol, 2019, 43(6): 501-511.
[9] He Jieli,Shi Tiantian,Chen Ling,Wang Haigang,Gao Zhijun,Yang Meihong,Wang Ruiyun,Qiao Zhijun. The Genetic Diversity of Common Millet (Panicum miliaceum) Germplasm Resources Based on the EST-SSR Markers [J]. Chin Bull Bot, 2019, 54(6): 723-732.
[10] ZHANG Xin-Xin, WANG Xi, HU Ying, ZHOU Wei, CHEN Xiao-Yang, HU Xin-Sheng. Advances in the study of population genetic diversity at plant species’ margins [J]. Chin J Plant Ecol, 2019, 43(5): 383-395.
[11] Miao Qingxia, Fang Yan, Chen Yinglong. Studies in the Responses of Wheat Root Traits to Drought Stress [J]. Chin Bull Bot, 2019, 54(5): 652-661.
[12] WANG Jin, ZHU Jiang, AI Xun-Ru, YAO Lan, HUANG Xiao, WU Man-Ling, ZHU Qiang, HONG Jian- Feng. Effects of topography on leaf functional traits across plant life forms in Xingdou Mountain, Hubei, China [J]. Chin J Plant Ecol, 2019, 43(5): 447-457.
[13] Zhang Yahong, Jia Huixia, Wang Zhibin, Sun Pei, Cao Demei, Hu Jianjun. Genetic diversity and population structure of Populus yunnanensis [J]. Biodiv Sci, 2019, 27(4): 355-365.
[14] TAN Feng-Sen, SONG Hui-Qing, LI Zhong-Guo, ZHANG Qi-Wei, ZHU Shi-Dan. Hydraulic safety margin of 17 co-occurring woody plants in a seasonal rain forest in Guangxi’s Southwest karst landscape, China [J]. Chin J Plant Ecol, 2019, 43(3): 227-237.
[15] Hu Jianlin,Liu Zhifang,Ci Xiuqin,Li Jie. Use of DNA Barcoding in Identifying Tropical Trees from Dipterocarpaceae [J]. Chin Bull Bot, 2019, 54(3): 350-359.
Full text



[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 19 .
[2] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chin Bull Bot, 1985, 3(06): 7 -9 .
[3] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chin Bull Bot, 2003, 20(03): 319 -324 .
[4] SONG Li-Ying TAN Zheng GAO Feng DENG Shu-Yan. Advances in in vitro Culture of Cucurbitaceae in China[J]. Chin Bull Bot, 2004, 21(03): 360 -366 .
[5] Shi Jian ming;Gui Yao-lin and Zhu Zhi-qing. Observation on Amitosis of Sugarbeet (Beta vulgaris) Petiole during Dedifferentiation in Vitro[J]. Chin Bull Bot, 1989, 6(03): 155 .
[6] LI Jun-De YANG Jian WANG Yu-Fei. Aquatic Plants in the Miocene Shanwang Flora[J]. Chin Bull Bot, 2000, 17(专辑): 261 .
[7] XU Jing-Xian WANG Yu-Fei YANG Jian PU Guang-Rong ZHANG Cui-Fen. Advances in the Research of Tertiary Flora and Climate in Yunnan[J]. Chin Bull Bot, 2000, 17(专辑): 84 -94 .
[8] Sun Zhen-xiao Xia Guang-min Chen Hui-min. Karyotype Analysis of Psathyrostachys juncea[J]. Chin Bull Bot, 1995, 12(01): 56 .
[9] Yunpu Zheng;Jiancheng Zhao * ;Bingchang Zhang;Lin Li;Yuanming Zhang . Advances on Ecological Studies of Algae and Mosses in Biological Soil Crust[J]. Chin Bull Bot, 2009, 44(03): 371 -378 .
[10] Zili Wu, Mengyao Yu, Lu Chen, Jing Wei, Xiaoqin Wang, Yong Hu, Yan Yan, Ping Wan. Transcriptome Analysis of Physcomitrella patens Response to Cadmium Stress by Bayesian Network[J]. Chin Bull Bot, 2015, 50(2): 171 -179 .