Chinese Bulletin of Botany ›› 2020, Vol. 55 ›› Issue (1): 1-4.doi: 10.11983/CBB19240

• COMMENTARIES •     Next Articles

The Development of Genomics Technologies Drives New Progress in Horticultural Plant Research

Tang Jiali,Qiu Jie,Huang Xuehui()   

  1. Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
  • Received:2019-12-15 Accepted:2019-12-17 Online:2019-12-20 Published:2020-01-01
  • Contact: Huang Xuehui E-mail:xhhuang@shnu.edu.cn

Abstract:

Horticultural plants include flowers, vegetables, fruit trees, some melon (such as watermelon (Citrullus lanatus), muskmelon (Cucumis melo)) and tea trees (Camellia sinensis), with a large number of species based on plant classification. Genomics and genetics researches for horticultural plants are of important theoretical value and economic significance. The development of genome sequencing technology and related bioinformatics tools greatly facilitate molecular biology researches of horticultural plants. In addition to its important ornamental value, the plant species ‘water lily’ has a very special position in evolutionary, belonging to an early angiosperm group. Recently, a high-quality genome map of an important flower plant, water lily, was generated. Through systematic analysis and genomic comparison of the water lily genome and other angiosperm genomes, the researchers thoroughly elucidated the evolutionary position and related evolutionary events of water lily. Based on the high-quality genomic sequences of these horticultural plants, researchers in horticultural plant science are expected to carry out in-depth molecular genetics research and identify functional genes underlying many traits such as flower organs, flower color, fragrance, and quality, which is expected to promote basic research and accelerate the creation of new varieties.

Key words: water lily, genome, horticulture, evolution

Figure 1

Plant phylogeny diagram According to plant phylogeny, water lilies belong to primitive angiosperms, while lotuses belong to typical dicotyledons."

[1] Chen F, Liu X, Yu CW, Chen YC, Tang HB, Zhang LS (2017). Water lilies as emerging models for Darwin’s abominable mystery. Hortic Res 4, 17051.
[2] Chen LY, VanBuren R, Paris M, Zhou HY, Zhang XT, Wai CM, Yan HS, Chen S, Alonge M, Ramakrishnan S, Liao ZY, Liu J, Lin JS, Yue JJ, Fatima M, Lin ZC, Zhang JS, Huang LX, Wang H, Hwa TY, Kao SM, Choi AEY, Sharma A, Song J, Wang LL, Yim WC, Cushman JC, Paull RE, Matsumoto T, Qin Y, Wu QS, Wang JP, Yu QY, Wu J, Zhang SL, Boches P, Tung CW, Wang ML, D’Eeckenbrugge GC, Sanewski GM, Purugganan MD, Schatz MC, Bennetzen JL, Lexer C, Ming R (2019). The bracteatus pineapple genome and domestication of clonally propagated crops. Nat Genet 51, 1549-1558.
[3] Guo SG, Zhao SJ, Sun HH, Wang X, Wu S, Lin T, Ren Y, Gao L, Deng Y, Zhang J, Lu XQ, Zhang HY, Shang JL, Gong GY, Wen CL, He N, Tian SW, Li MY, Liu JP, Wang YP, Zhu YC, Jarrets R, Levi A, Zhang XP, Huang SW, Fei ZJ, Liu WG, Xu Y (2019). Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat Genet 51, 1616-1623.
[4] Liao NQ, Hu ZY, Li YY, Hao JF, Chen SN, Xue Q, Ma YY, Zhang KJ, Mahmoud A, Ali A, Malangisha GK, Lyu XL, Yang JH, Zhang MF (2020). Ethylene-responsive factor 4 is associated with the desirable rind hardness trait conferring cracking resistance in fresh fruits of watermelon. Plant Biol J 18, 1066-1077.
[5] Ming R, VanBuren R, Wai CM, Tang HB, Schatz MC, Bowers JE, Lyons E, Wang ML, Chen J, Biggers E, Zhang JS, Huang LX, Zhang LM, Miao WJ, Zhang J, Ye ZY, Miao CY, Lin ZC, Wang H, Zhou HY, Yim WC, Priest HD, Zheng CF, Woodhouse M, Edger PP, Guyot R, Guo HB, Guo H, Zheng GY, Singh R, Sharma A, Min XJ, Zheng Y, Lee H, Gurtowski J, Sedlazeck FJ, Harkess A, McKain MR, Liao ZY, Fang JP, Liu J, Zhang XD, Zhang Q, Hu WC, Qin Y, Wang K, Chen LY, Shirley N, Lin YR, Liu LY, Hernandez AG, Wright CL, Bulone V, Tuskan GA, Heath K, Zee F, Moore PH, Sunkar R, Leebens-Mack JH, Mockler T, Bennetzen JL, Freeling M, Sankoff D, Paterson AH, Zhu XG, Yang XH, Smith JAC, Cushman JC, Paull RE, Yu QY (2015). The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47, 1435-1442.
[6] The French-Italian Public Consortium for Grapevine Genome Characterization (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463-467.
[7] Zhang LS, Chen F, Zhang XT, Li Z, Zhao YY, Rolf L, Chang XJ, Dong W, Simon YWH, Liu X, Song AX, Chen JH, Guo WL, Wang ZJ, Zhuang YY, Wang HF, Chen XQ, Hu J, Liu YH, Qin Y, Wang K, Dong SS, Liu Y, Zhang SZ, Yu XX, Wu Q, Wang LS, Yan XQ, Jiao YN, Kong HZ, Zhou XF, Yu CW, Chen YC, Li F, Wang JH, Chen W, Chen XL, Jia QD, Zhang C, Jiang YF, Zhang WB, Liu GH, Fu JY, Chen F, Ma H, Yves VP, Tang HB (2019). The water lily genome and the early evolution of flowering plants. Nature 577, 79-84.
[8] Zhao GW, Lian Q, Zhang ZH, Fu QS, He YH, Ma S, Ruggieri V, Monforte AJ, Wang PY, Julca I, Wang HS, Liu JP, Xu Y, Wang RZ, Ji JB, Xu ZH, Kong WH, Zhong Y, Shang JL, Pereira L, Argyris J, Zhang J, Mayobre C, Pujol M, Oren E, Out D, Wang JM, Sun DX, Zhao SJ, Zhu YC, Li N, Katzir N, Gur A, Dogimont C, Schaefer H, Fan W, Bendahmane A, Fei Z, Pitrat M, Gabaldon T, Lin T, Garcia-Mas J, Xu YY, Huang SW (2019). A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nat Genet 51, 1607-1615.
[1] Liangrui Yu Zhengcai Zhu Xiaoyun Pan. Phenotypic plasticity of Alternanthera philoxeroides in response to root neighbors of kin: introduced vs. native genotypes [J]. Biodiv Sci, 2020, 28(6): 0-0.
[2] Benfeng Han, Xin Zhou, Xue Zhang. Verification of virus identity and host association using genomics technology [J]. Biodiv Sci, 2020, 28(5): 587-595.
[3] Chen-yang Yan. Identification and Evolution Analysis of LRR VIII-2 Subfamily Genes in Four Model Plant Species [J]. Chinese Bulletin of Botany, 2020, 55(4): 0-0.
[4] . Stepping out of the Shadow of Goethe: for a More Scientific Plant Systematics [J]. Chinese Bulletin of Botany, 2020, 55(4): 0-0.
[5] huang sanwensanwen. A 360-degree scanning of population genetic variations—a pan-genome study of soybean [J]. Chinese Bulletin of Botany, 2020, 55(4): 0-0.
[6] Yuanyuan Li,Chaonan Liu,Rong Wang,Shuixing Luo,Shouqian Nong,Jingwen Wang,Xiaoyong Chen. Applications of molecular markers in conserving endangered species [J]. Biodiv Sci, 2020, 28(3): 367-375.
[7] Huijin Fan, Kangming Jin, Renying Zhuo, Guirong Qiao. Cloning and Expression Analysis of Different Truncated U3 Promoters in Phyllostachys edulis [J]. Chinese Bulletin of Botany, 2020, 55(3): 299-307.
[8] Zuo Zeyuan,Liu Wanlin,Xu Jie. Evolution and Functional Analysis of Gene Clusters in Anther Tapetum Cells of Arabidopsis thaliana [J]. Chinese Bulletin of Botany, 2020, 55(2): 147-162.
[9] ZHANG Chan, AN Yu-Meng, Yun JÄSCHKE, WANG Lin-Lin, ZHOU Zhi-Li, WANG Li-Ping, YANG Yong-Ping, DUAN Yuan-Wen. Processes on reproductive ecology of plant species in the Qinghai-Xizang Plateau and adjacent highlands [J]. Chin J Plant Ecol, 2020, 44(1): 1-21.
[10] Lu Ningna, Liu Zhenheng, Ma Yan, Lu Guangmei, Meng Xiuxiang. Phenotypic selection analysis of flower traits in Delphinium kamaonense var. glabrescens (Ranunculaceae) [J]. Biodiv Sci, 2019, 27(7): 772-777.
[11] Song Min,Zhang Yao,Wang Liying,Peng Xiangyong. Genome-wide Identification and Phylogenetic Analysis of Zinc Finger Homeodomain Family Genes in Brassica napus [J]. Chinese Bulletin of Botany, 2019, 54(6): 699-710.
[12] Zhao Yuemei, Yang Zhenyan, Zhao Yongping, Li Xiaoling, Zhao Zhixin, Zhao Guifang. Chloroplast Genome Structural Characteristics and Phylogenetic Relationships of Oleaceae [J]. Chinese Bulletin of Botany, 2019, 54(4): 441-454.
[13] Su Yuekai,Qiu Jingren,Zhang Han,Song Zhenqiao,Wang Jianhua. Recent Progress in Evolutionary Technology of CRISPR/Cas9 System for Plant Genome Editing [J]. Chinese Bulletin of Botany, 2019, 54(3): 385-395.
[14] Tu Weifeng,Zhang Yang,Tang Jie,Tu Yuqin,Xin Jiajia,Ji Hongli,Zhang Nanfeng,Zhang Tao. Comparison of taxonomic morphological characteristics between Rorippa indica and R. dubia [J]. Biodiv Sci, 2019, 27(2): 168-176.
[15] Hao Wang, Rui Zhang, Jiao Zhang, Hui Shen, Xiling Dai, Yuehong Yan. De novo transcriptome assembly reveals the whole genome duplication events of Didymochlaena trancatula [J]. Biodiv Sci, 2019, 27(11): 1221-1227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chinese Bulletin of Botany, 1985, 3(04): 1 -6 .
[2] Li Da Jue;Han Yun-zhou and Wan Li-ping. Studies on Germplasm Collections of Carthamus tinctorius IV Screening of the characterization of Seed Domancy[J]. Chinese Bulletin of Botany, 1990, 7(02): 50 -52 .
[3] . [J]. Chinese Bulletin of Botany, 1999, 16(增刊): 45 -46 .
[4] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chinese Bulletin of Botany, 1998, 15(03): 69 -72 .
[5] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chinese Bulletin of Botany, 1998, 15(02): 14 -22 .
[6] Huanhuan Xu, Jian Kang, Mingxiang Liang. Research Advances in the Metabolism of Fructan in Plant Stress Resistance[J]. Chinese Bulletin of Botany, 2014, 49(2): 209 -220 .
[7] . [J]. Chinese Bulletin of Botany, 2013, 48(1): 4 -5 .
[8] . [J]. Chinese Bulletin of Botany, 1996, 13(专辑): 45 .
[9] SHU Qun-Fang;ZHOU Lu;LI Wen-Bin;ZHANG LI-Ming and SUN Yong-Ru. Study on Gel Electrophoresis of Protein from Plant and Our Improved Methods[J]. Chinese Bulletin of Botany, 1998, 15(06): 73 -78 .
[10] ZHANG Zhi-Dong, ZANG Run-Guo. PREDICTING POTENTIAL DISTRIBUTIONS OF DOMINANT WOODY PLANT KEYSTONE SPECIES IN A NATURAL TROPICAL FOREST LANDSCAPE OF BAWANGLING, HAINAN ISLAND, SOUTH CHINA[J]. Chin J Plan Ecolo, 2007, 31(6): 1079 -1091 .