Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (6): 779-785.doi: 10.11983/CBB19137

• SPECIAL TOPICS • Previous Articles     Next Articles

Stress Memory Mediated by Epigenetic Modification in Plants

Chen Wei1,Yang Yingzeng1,2,Chen Feng1,2,Zhou Wenguan1,2,Shu Kai1,*()   

  1. 1 Research Center for Ecology and Environmental Sciences, Northwestern Polytechnical University, Xi’an 710129, China
    2 Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
  • Received:2019-07-18 Accepted:2019-10-17 Online:2020-07-09 Published:2019-11-01
  • Contact: Shu Kai E-mail:kshu@nwpu.edu.cn

Abstract:

Because of the fixed growth habits lacking of mobility, plants have innovated unique strategies to cope with variable environmental conditions. For their survival, plants have evolved mechanisms of stress memories to adapt to the adverse environments and thus protect themselves. Epigenetic modifications not only regulate the growth and development of plants, but also participate in responses to various abiotic and/or biotic stresses. Recent studies have shown that epigenetic modifications play important roles in the control of plant stress memory. In particular, DNA methylation, histone methylation, histone acetylation modification, and other modifications are involved in the formation and the maintenance of specific stress memories. This review highlights the recent advances of plant stress memories mediated by epigenetic modifications, and some key challenges in this field were discussed.

Key words: epigenetic modification, DNA methylation, histone modification, stress memory

Table 1

Epigenetic modifications involved in various stress memories"

修饰方式 胁迫类型 相关基因或调控因子 物种 机理 参考文献
DNA
甲基化
干旱 桃叶蓼 DNA甲基化能介导干旱胁迫记忆的维持, 而DNA去甲基化处理会移除干旱胁迫记忆 Li et al., 2019; Herman and Sultan, 2016
拟南芥 干旱胁迫记忆导致全基因组DNA低甲基化 Boyko et al., 2010
水稻 盐胁迫导致可遗传的DNA甲基化变化 Feng et al., 2012
DNA糖基化酶 拟南芥 DNA特定区域的超甲基化介导盐胁迫记忆, 而DNA糖基化酶能够抑制盐胁迫记忆的遗传 Wibowo et al., 2016
生物 PR-1 拟南芥 DNA的低甲基化水平增强PR-1的表达, 介导生物胁迫记忆的遗传 Luna et al., 2012
组蛋白
修饰
高温 HSFA2 拟南芥 HSFA2能够维持高水平的H3K4me3/2, 从而维持高温胁迫记忆 Lämke et al., 2016; Liu et al., 2018
FGT1 拟南芥 FGT1诱导并维持记忆基因的表达, 通过调控核小体占位介导胁迫记忆 Brzezinka et al., 2016
HSFA2, REF6 拟南芥 HSFA2与REF6形成一个正反馈回路, 维持H3K27me3去甲基化调控的高温胁迫记忆 Liu et al., 2019
干旱 RD29B, RAB18 拟南芥 高水平的H3K4me3修饰可以加快RD29BRAB18基因的转录 Ding et al., 2012
HKT1 拟南芥 H3K27me3修饰水平的降低加快HKT1基因的转录 Sani et al., 2013
P5CS1 拟南芥 高水平的H3K4me3修饰加快P5CS1基因的转录 Feng et al., 2016
低温 COR15A, ATGOLS3 拟南芥 H3K27me3修饰减少促进COR15AATGOLS3基因的转录 Kwon et al., 2009
FLC 拟南芥 H3K27me3与FLC基因启动子中的起始复合体(PRC2)互作, 进而维持对FLC基因表达的抑制 Berry and Dean, 2015
生物 WRKY6, WRKY53 拟南芥 H3K4me3修饰促进WRKY6WRKY53的转录 Jaskiewicz et al., 2011
PLANT DEFENSIN1.2 拟南芥 H3K27me3修饰抑制PLANT DEFENSIN1.2基因的转录 Luna et al., 2012
PATHOGENESIS-RELATED GENE1, WRKY6, WRKY53 拟南芥 H3K9ac修饰促进PATHOGENESIS-RELATED GENE1WRKY6WRKY53的转录 Luna et al., 2012
[1] Bannister AJ, Schneider R, Kouzarides T ( 2002). Histone methylation: dynamic or static? Cell 109, 801-806.
[2] Berry S, Dean C ( 2015). Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant J 83, 133-148.
[3] Bouché F, Woods DP, Amasino RM ( 2017). Winter memory throughout the plant kingdom: different paths to flowering. Plant Physiol 173, 27-35.
[4] Boyko A, Blevins T, Yao YL, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Meins F Jr, Kovalchuk I ( 2010). Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS One 5, e9514.
[5] Brzezinka K, Altmann S, Czesnick H, Nicolas P, Gorka M, Benke E, Kabelitz T, Jähne F, Graf A, Kappel C, Bäurle I ( 2016). Arabidopsis FORGETTER1 mediates stress- induced chromatin memory through nucleosome remodeling. eLife 5, e17061.
[6] Chong SY, Whitelaw E ( 2004). Epigenetic germline inheritance. Curr Opin Genet Dev 14, 692-696.
[7] Conrath U, Beckers GJM, Langenbach CJG, Jaskiewicz MR ( 2015). Priming for enhanced defense. Annu Rev Phytopathol 53, 97-119.
[8] Ding Y, Fromm M, Avramova Z ( 2012). Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat Commun 3, 740.
[9] Ding Y, Liu N, Virlouvet L, Riethoven JJ, Fromm M, Avramova Z ( 2013). Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol 13, 229.
[10] Ding Y, Virlouvet L, Liu N, Riethoven JJ, Fromm M, Avramova Z ( 2014). Dehydration stress memory genes of Zea mays; comparison with Arabidopsis thaliana. BMC Plant Biol 14, 141.
[11] Eberharter A, Becker PB ( 2002). Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3, 224-229.
[12] Ebrahim A, Brunk E, Tan J, O’Brien EJ, Kim D, Szubin R, Lerman JA, Lechner A, Sastry A, Bordbar A, Feist AM, Palsson BO ( 2016). Multi-omic data integration enables discovery of hidden biological regularities. Nat Commun 7, 13091.
[13] Feng QZ, Yang CW, Lin XY, Wang JM, Ou XF, Zhang CY, Chen Y, Liu B ( 2012). Salt and alkaline stress induced transgenerational alteration in DNA methylation of rice ( Oryza sativa ). Aust J Crop Sci 6, 877-883.
[14] Feng XJ, Li JR, Qi SL, Lin QF, Jin JB, Hua XJ ( 2016). Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis. Proc Natl Acad Sci USA 113, E8335-E8343.
[15] Franks SJ, Hoffmann AA ( 2012). Genetics of climate change adaptation. Annu Rev Genet 46, 185-208.
[16] Friedrich T, Faivre L, Bäurle I, Schubert D ( 2019). Chromatin-based mechanisms of temperature memory in plants. Plant Cell Environ 42, 762-770.
[17] Gruenbaum Y, Naveh-Many T, Cedar H, Razin A ( 1981). Sequence specificity of methylation in higher plant DNA. Nature 292, 860-862.
[18] Herman JJ, Sultan SE ( 2016). DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc R Soc B 283, 20160988.
[19] Hilker M, Schmülling T ( 2019). Stress priming, memory, and signaling in plants. Plant Cell Environ 42, 753-761.
[20] Jaskiewicz M, Conrath U, Peterhänsel C ( 2011). Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12, 50-55.
[21] Kwon CS, Lee D, Choi G, Chung WI ( 2009). Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. Plant J 60, 112-121.
[22] Lämke J, Bäurle I ( 2017). Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 18, 124.
[23] Lämke J, Brzezinka K, Altmann S, Bäurle I ( 2016). A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J 35, 162-175.
[24] Li P, Yang H, Wang L, Liu HJ, Huo HQ, Zhang CJ, Liu AZ, Zhu AD, Hu JY, Lin YJ, Liu L ( 2019). Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Front Genet 10, 55.
[25] Liu HC, Lämke J, Lin SY, Hung MJ, Liu KM, Charng YY, Bäurle I ( 2018). Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. Plant J 95, 401-413.
[26] Liu JZ, Feng LL, Gu XT, Deng X, Qiu Q, Li Q, Zhang YY, Wang MY, Deng YW, Wang ET, He YK, Bäurle I, Li JM, Cao XF, He ZH ( 2019). An H3K27me3 demethylase- HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res 29, 379-390.
[27] Luna E, Bruce TJA, Roberts MR, Flors V, Ton J ( 2012). Next-generation systemic acquired resistance. Plant Physiol 158, 844-853.
[28] Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CMJ, Pozo MJ, Ton J, van Dam NM, Conrath U ( 2016). Recognizing plant defense priming. Trends Plant Sci 21, 818-822.
[29] Molinier J, Ries J, Zipfel C, Hohn B ( 2006). Transgeneration memory of stress in plants. Nature 442, 1046-1049.
[30] Rasmann S, de Vos M, Casteel CL, Tian DL, Halitschke R, Sun JY, Agrawal AA, Felton GW, Jander G ( 2012). Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158, 854-863.
[31] Richards EJ ( 2006). Inherited epigenetic variation-revisiting soft inheritance. Nat Rev Genet 7, 395-401.
[32] Sani E, Herzyk P, Perrella G, Colot V, Amtmann A ( 2013). Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol 14, R59.
[33] Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Bäurle I ( 2014). Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26, 1792-1807.
[34] van Hulten M, Pelser M, van Loon LC, Pieterse CMJ, Ton J ( 2006). Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103, 5602-5607.
[35] Vanyushin BF, Ashapkin VV ( 2011). DNA methylation in higher plants: past, present and future. Biochim Biophys Acta Gene Regul Mech 1809, 360-368.
[36] Wang JJ, Meng XW, Dobrovolskaya OB, Orlov YL, Chen M ( 2017). Non-coding RNAs and their roles in stress response in plants. Genom Proteom Bioinformat 15, 301-312.
[37] Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, Papareddy R, Putra H, Kageyama J, Becker J, Weigel D, Gutierrez-Marcos J ( 2016). Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife 5, e13546.
[38] Yakovlev IA, Carneros E, Lee YK, Olsen JE, Fossdal CG ( 2016). Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta 243, 1237-1249.
[39] Zhang XY, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE ( 2009). Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol 10, R62.
[1] . A New Progress of Green Revolution: Epigenetic Modification Dual-regulated by Gibberellin and Nitrogen Supply Contributes to Breeding of High Yield and Nitrogen Use Efficiency Rice [J]. Chin Bull Bot, 2020, 55(1): 0-0.
[2] De-Xing Zhang. Unorthodox reflections on molecular ecology research in China [J]. Biodiv Sci, 2015, 23(5): 559-569.
[3] De-Xing Zhang. Unorthodox reflections on molecular ecology research in China [J]. Biodiv Sci, 2015, 23(5): 559-569.
[4] Xiaoguo Zheng, Liang Chen, Lijun Luo. Research Progress in Epigenetic Modification and Its Function in Plants [J]. Chin Bull Bot, 2013, 48(5): 561-572.
[5] Xinxin Guo, Xue Mao, Min Zhang. Effect of zinc on DNA methylation diversity at different developmental stages of filial generation in Drosophila [J]. Biodiv Sci, 2012, 20(6): 710-715.
[6] Ling Yan, Yifei Liu, Hongwen Huang. Genetic and Epigenetic Variation in the Cytotype Mixture Population of Actinidia chinensis [J]. Chin Bull Bot, 2012, 47(5): 454-461.
[7] Meishan Zhang, Bao Liu. Epigenetic Regulation in Plant Endosperm Development [J]. Chin Bull Bot, 2012, 47(2): 101-110.
[8] Yaqiong Du, Zicheng Wang. Methylation-sensitive Amplified Polymorphism Analysis of DNA Methylation in Arabidopsis Under Mannitol Treatment [J]. Chin Bull Bot, 2011, 46(3): 285-292.
[9] Yanxia He;Zicheng Wang*. Variation of DNA Methylation in Arabidopsis thaliana Seedlings After the Cryopreservation [J]. Chin Bull Bot, 2009, 44(03): 317-322.
[10] Nan Nan;Fansuo Zeng;Yaguang Zhan*. DNA Methylation in Plants and the Approaches to Study [J]. Chin Bull Bot, 2008, 25(01): 102-111.
[11] CUI Xin CHEN Qing-Shan YANG Qing-Kai CAO Yue-Ping. Silencing and Eliminating of Transgenesin Transgenic Plants [J]. Chin Bull Bot, 2002, 19(03): 374-379.
[12] DIAO Xian-Min and SUN Jing-San. Cytological and Molecular Biological Research Progress in Plant Somaclonal Variation [J]. Chin Bull Bot, 1999, 16(04): 372-377.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Yu-Tang TU Jin-Xing FU Ting-Dong CHEN Bao-Yuan. Molecular Biology and Evolutionary Models of Self-incompatible Genes in Brassica Genus[J]. Chin Bull Bot, 2003, 20(05): 513 -521 .
[2] YANG Wen;HE Ru-Zhou;CHENG Jian-Ping;GUO Rong-Fa and KUANG Xue-Mei. Analyses of Peroxidase Isozyme in Sugarcane Varieties[J]. Chin Bull Bot, 1998, 15(06): 65 -69 .
[3] Wang Tian-chi and Lin Kan. A Review on The Application of Electrofusion in Plant Cell Engineering[J]. Chin Bull Bot, 1994, 11(03): 19 -24 .
[4] Decheng Xu, Xiaojing Wang. Axillary Bud Propagation and Regeneration from Stem Segment Explants in Calophyllum inophyllum[J]. Chin Bull Bot, 2014, 49(2): 167 -172 .
[5] WANG Wei, LI Qing-Kang, MA Ke-Ping. Establishment and Spatial Distribution of Quercus liaotungensis Koidz. Seedlings in Dongling Mountain[J]. Chin J Plan Ecolo, 2000, 24(5): 595 -600 .
[6] LIU Gui-Hua, ZHOU Jin, LI Wei, GUO You-Hao. Population Restoration of Oryza rufipogon II. Population Dynamics[J]. Chin J Plan Ecolo, 2002, 26(3): 372 -376 .
[7] WANG Xu-Dong, YU Zhen-Wen, WANG Dong. Effect o Potassium on Sucrose Content of Flag Leaves and Starch Accumulation of Kernels in Wheat[J]. Chin J Plan Ecolo, 2003, 27(2): 196 -201 .
[8] YU Shun-Li, JIANG Gao-Ming. The Research Development of Soil Seed Bank and Several Hot Topics[J]. Chin J Plan Ecolo, 2003, 27(4): 552 -560 .
[9] Gao Qiong. The Applicability of GM (1, N) Model to Biological Systems[J]. Chin J Plan Ecolo, 1991, 15(2): 121 -128 .
[10] WANG Hua-Tian, YANG Yang, WANG Yan-Ping, JIANG Yue-Zhong, WANG Zong-Qin. Effects of exogenous phenolic acids on nitrate absorption and utilization of hydroponic cuttings of Populus × euramericana ‘Neva’[J]. Chin J Plan Ecolo, 2011, 35(2): 214 -222 .