Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (3): 343-349.doi: 10.11983/CBB18106

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Phylogeny and Tissue-specific Expression of the GBSS Genes in Oryza officinalis

Zhang Xia1,Jing Xiang1,Zhou Guangcai2,Bao Ying1,*()   

  1. 1. School of Life Sciences, Qufu Normal University, Qufu 273165, China
    2. Lin Zi No.2 Middle School of Zibo, Zibo 255400, China
  • Received:2018-04-26 Accepted:2018-12-10 Online:2019-11-24 Published:2019-05-01
  • Contact: Bao Ying E-mail:baoyingus@126.com

Abstract:

Starch is a main kind of carbohydrates and plays a vital role in energy storage. The granule-bound starch synthase (GBSS) is responsible for the synthesis of amylose. Although GBSS genes have been cloned and identified in many cultivated plants, there are only a few cases of studies on non-cultrivated plants. The present study involved qualitative and quantitative analyses on the sequence characteristics, phylogeny, and expression pattern of GBSS genes in Oryza officinalis. Phylogenetic analysis showed that the GBSS was encoded by two GBSS genes (GBSSI and GBSSII) in all species of Poaceae. In O. officinalis, the two genes shared 62% amino acid identity and displayed different expression patterns in different organs. GBSSII expression was higher in leaves than seeds, whereas GBSSI was mainly expressed in seeds, which suggests divergent spatial expression of the two genes in this wild rice.

Key words: Oryza officinalis, granule-bound starch synthase, sequence identity, expression divergence, leaf, seed

Table 1

Primer sequences of GBSSI and GBSSII"

GenePrimer namePrimer sequence (5'-3')
GBSSIGBSSI-FAACGTGGCTGCTCCTTGAA
GBSSI-RTTGGCAATAAGCCACACACA
GBSSIIGBSSII-FAGGCATCGAGGGTGAGGAG
GBSSII-RCCATCTGGCCCACATCTCTA

Figure 1

Gene structures of the GBSSI and GBSSII in Oryza officinalis"

Table 2

Amino acid sequence identities of GBSSs between Oryza officinalis and other plants"

PlantsGene (GenBank/UniProt No.)Sequence identity (%)
Oryza officinalis
GBSSIGBSSII
Oryza sativa subsp. japonicaGBSSI (XP_025882300.1)95.2260.35
GBSSII (XP_015647210.1)62.3096.72
O. sativa subsp. indicaGBSSI (AAN77100.1)97.8762.30
GBSSII (ACY56079.1)62.4697.04
Leersia perrieriGBSSI (A0A0D9WLF6) *93.0162.15
GBSSII (A0A0D9WED4) *58.4485.62
Zizania latifoliaGBSSI (ASSH01051725.1) **90.8062.01
GBSSII (ASSH01023543.1) **59.4687.47
Brachypodium distachyonGBSSI (XP_003557139.1)79.3161.16
GBSSII (XP_003569238.1)60.3385.43
Hordeum vulgareGBSSI (BAC41202.1)81.9760.76
GBSSII (BAJ99426.1)61.8586.12
Setaria italicaGBSSI (AGW27658.1)86.7261.90
GBSSII (XP_004956034.1)62.4087.34
Sorghum bicolorGBSSI (XP_002436418.1)82.5261.90
GBSSII (XP_002461889.1)62.6286.18
Triticum aestivumGBSSI (XP_020146905.1)81.3760.36
GBSSII (AAG27624.1)61.7986.09
Zea maysGBSSI (NP_001105001)82.0862.13
GBSSII (NP_001334833)62.3685.88
Musa acuminataGBSS1 (KF512020.1)66.3965.35
GBSS2 (KF512021.1)67.9663.99
GBSS3 (KF512023.1)63.9362.91
Arabidopsis thalianaGBSS (XP_020866584.1)62.4863.88
Gossypium raimondiiGBSS1 (XP_012474755.1)63.8966.01
GBSS2 (XP_012439861.1)63.1166.77
GBSS3 (XP_012486622.1)62.7564.01
Solanum lycopersicumGBSS (NP_001311457.1)67.0562.03
Carica papayaGBSS (XP_021900468.1)65.9166.45
S. tuberosumGBSS (XP_006343763.1)62.8967.27
Vitis viniferaGBSS1 (XP_010660257.1)65.5266.23
GBSS2 (XP_019081062.1)64.0767.76
Amborella trichopodaGBSS (XP_006837847.1)62.8166.17
Chlamydomonas reinhardtiiGBSS (XP_001697117.1)47.7947.05

Figure 2

A maximum likelihood phylogenetic tree of the GBSS based on amino acid sequences Numbers near branches indicate bootstrap value."

Figure 3

Relative expression of GBSSI and GBSSII in leaves and seeds of Oryza officinalis(A), (B) Amplification results of RT-PCR and qRT-PCR for GBSS genes in leaves; (C), (D) Amplification results of RT-PCR and qRT-PCR for GBSS genes in seeds."

[1] 包颖, 杜家潇, 景翔, 徐思 (2015). 药用野生稻叶中淀粉合成酶基因家族的序列分化和特异表达. 植物学报 50, 683-690.
doi: 10.11983/CBB14147
[2] 陈凤花, 王琳, 胡丽华 (2005). 实时荧光定量RT-PCR内参基因的选择. 临床检验杂志 23, 393-395.
doi: 10.3969/j.issn.1001-764X.2005.05.039
[3] 顾燕娟 (2006). 支链淀粉合成相关基因等位基因间的差异对稻米淀粉理化特性的影响. 硕士论文. 扬州: 扬州大学. pp. 3-8.
doi: 10.7666/d.y927534
[4] 王倩, 孙文静, 包颖 (2017). 植物颗粒结合淀粉合酶GBSS基因家族的进化. 植物学报 52, 179-187.
doi: 10.11983/CBB16041
[5] 杨学明 (2003). 几个重复序列在不同稻种中的分布及其与稻种分化关系的研究. 硕士论文. 扬州: 扬州大学. pp. 6-10.
doi: 10.7666/d.y564718
[6] 张鹏 (2008). 抑制淀粉分支酶类基因表达对稻米品质影响的研究. 硕士论文. 扬州: 扬州大学. pp. 3-8.
doi: 10.7666/d.y1261684
[7] Bao Y, Xu S, Jing X, Meng L, Qin ZY (2015). De novo assembly and characterization ofOryza officinalis leaf transcriptome by using RNA-seq. Biomed Res Int 2015, 982065.
[8] Cheng J, Khan MA, Qiu WM, Li J, Zhou H, Zhang Q, Guo WW, Zhu TT, Peng JH, Sun FJ, Li SH, Korban SS, Han YP (2012). Diversification of genes encoding granulebound starch synthase in monocots and dicots is marked by multiple genome-wide duplication events.PLoS One 7, e30088.
doi: 10.1371/journal.pone.0030088 pmid: 3264551
[9] Dian WM, Jiang HW, Wu P (2005). Evolution and expression analysis of starch synthase III and IV in rice.J Exp Bot 56, 623-632.
doi: 10.1093/jxb/eri065 pmid: 15642712
[10] Gouy M, Guindon S, Gascuel O (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building.Mol Biol Evol 27, 221-224.
doi: 10.1093/molbev/msp259 pmid: 19854763
[11] Guindon S, Gascuel O (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.Syst Biol 52, 696-704.
doi: 10.1080/10635150390235520 pmid: 14530136
[12] Ohdan T, Francisco Jr PB, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y (2005). Expression profiling of genes involved in starch synthesis in sink and source organs of rice.J Exp Bot 56, 3229-3244.
doi: 10.1093/jxb/eri292 pmid: 16275672
[13] Shure M, Wessler S, Fedoroff N (1983). Molecular identification and isolation of thewaxy locus in maize. Cell 35, 225-233.
[14] Van Harsselaar JK, Lorenz J, Senning M, Sonnewald U, Sonnewald S (2017). Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.). BMC Genomics 18, 37.
[15] Vrinten PL, Nakamura T (2000). Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues.Plant Physiol 122, 255-264.
doi: 10.1104/pp.122.1.255
[16] Wang ZY, Wu ZL, Xing YY, Zheng FG, Guo XL, Zhang WG, Hong MM (1990). Nucleotide sequence of ricewaxy gene. Nucleic Acids Res 18, 5898.
[1] Yu-Tao HUANG. Alleviation effects of exogenous salicylic?acid on seed germination of kale under salt stress and its physiological basis [J]. Chin Bull Bot, 2020, 55(1): 0-0.
[2] LI Qun, ZHAO Cheng-Zhang, WANG Ji-Wei, WEN Jun, LI Zi-Qin, MA Jun-Yi. Morphological and photosynthetic physiological characteristics of Saussurea salsa in response to flooding in salt marshes of Xiao Sugan Lake, Gansu, China [J]. Chin J Plant Ecol, 2019, 43(8): 685-696.
[3] ZHANG Yi-Ping, HAI Xu-Ying, XU Jun-Liang, WU Wen-Xia, CAO Peng-He, AN Wen-Jing. Seasonal dynamics of non-structural carbohydrate content in branch of Quercus variabilis growing in east Qinling Mountain range [J]. Chin J Plant Ecol, 2019, 43(6): 521-531.
[4] Li Weitao, He Min, Chen Xuewei. Discovery of ZmFBL41 Chang7-2 as A Key Weapon against Banded Leaf and Sheath Blight Resistance in Maize [J]. Chin Bull Bot, 2019, 54(5): 547-549.
[5] Aysajan ABDUSALAM, Dilinaer ABULA, ZHANG Kai, Maireyemugu TUERXUN, Kadir ABDULRASHID, LI Ling. Fruit set and seed germination traits of Zygophyllum kaschgaricum [J]. Chin J Plant Ecol, 2019, 43(5): 437-446.
[6] Yang Liwen, Liu Shuangrong, Lin Rongcheng. Advances in Light and Hormones in Regulating Seed Dormancy and Germination [J]. Chin Bull Bot, 2019, 54(5): 569-581.
[7] Liu Dongfeng, Tang Yongyan, Luo Shengtao, Luo Wei, Li Zhitao, Chong Kang, Xu Yunyuan. Identification of Chilling Tolerance of Rice Seedlings by Cold Water Bath [J]. Chin Bull Bot, 2019, 54(4): 509-514.
[8] Liu Jin, Yao Xiaoyun, Yu Liqin, Li Hui, Zhou Huiying, Wang Jiayu, Li Maomao. Detection and Analysis of Dynamic Quantitative Trait Loci at Three Years for Seed Storability in Rice (Oryza sativa) [J]. Chin Bull Bot, 2019, 54(4): 464-473.
[9] ZHOU Hui-Min, LI Pin, FENG Zhao-Zhong, ZHANG Yin-Bo. Short-term effects of combined elevated ozone and limited irrigation on accumulation and allocation of non-structural carbohydrates in leaves and roots of poplar sapling [J]. Chin J Plant Ecol, 2019, 43(4): 296-304.
[10] YANG Huan-Ying, SONG Jian-Da, ZHOU Tao, JIN Guang-Ze, JIANG Feng, LIU Zhi-Li. Influences of stand, soil and space factors on spatial heterogeneity of leaf area index in a spruce-fir valley forest in Xiao Hinggan Ling, China [J]. Chin J Plant Ecol, 2019, 43(4): 342-351.
[11] FAN Zi-Teng, WU Yu-Ling, WANG Xin-Ju, LI Tai-Qiang, GAO Jiang-Yun. Effects of symbiotic fungi on seed germination of interspecific hybrid progenies in Orchidaceae [J]. Chin J Plant Ecol, 2019, 43(4): 374-382.
[12] Xie Lihong,Huang Qingyang,Cao Hongjie,Yang Fan,Wang Jifeng,Ni Hongwei. Leaf functional traits of Acer mono in Wudalianchi Volcano, China [J]. Biodiv Sci, 2019, 27(3): 286-296.
[13] TANG Dan-Dan, WU Yi, LIU Wen-Yao, HU Tao, HUANG Jun-Biao, ZHANG Ting-Ting. Ecological stoichiometry of two common hemiparasite plants and their relationship with host trees in Ailao Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2019, 43(3): 245-257.
[14] ZHANG Zhen-Zhen, ZHAO Ping, ZHANG Jin-Xiu, SI Yao. Conduits anatomical structure and leaf traits of diffuse- and ring-porous stems in subtropical evergreen broad-leaved forests [J]. Chin J Plant Ecol, 2019, 43(2): 131-138.
[15] Ma Hongxiu,Wang Kaiyong,Zhang Kaixiang,Meng Chunmei,An Mengjie. Effect of Cottonseed Meal on Cotton Physiology and Growth Compensation Under Salinity-alkalinity Stress [J]. Chin Bull Bot, 2019, 54(2): 208-216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chin Bull Bot, 1985, 3(04): 1 -6 .
[2] Li Da Jue;Han Yun-zhou and Wan Li-ping. Studies on Germplasm Collections of Carthamus tinctorius IV Screening of the characterization of Seed Domancy[J]. Chin Bull Bot, 1990, 7(02): 50 -52 .
[3] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[4] Yang Hong-yuan. Basic Principle and Method of Fluorescence Microscopy[J]. Chin Bull Bot, 1984, 2(06): 45 -48 .
[5] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chin Bull Bot, 1998, 15(03): 69 -72 .
[6] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chin Bull Bot, 1998, 15(02): 14 -22 .
[7] Huanhuan Xu, Jian Kang, Mingxiang Liang. Research Advances in the Metabolism of Fructan in Plant Stress Resistance[J]. Chin Bull Bot, 2014, 49(2): 209 -220 .
[8] . [J]. Chin Bull Bot, 2013, 48(1): 4 -5 .
[9] . [J]. Chin Bull Bot, 1996, 13(专辑): 45 .
[10] SHU Qun-Fang;ZHOU Lu;LI Wen-Bin;ZHANG LI-Ming and SUN Yong-Ru. Study on Gel Electrophoresis of Protein from Plant and Our Improved Methods[J]. Chin Bull Bot, 1998, 15(06): 73 -78 .