Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (3): 396-404.doi: 10.11983/CBB18099

• SPECIAL TOPICS • Previous Articles    

Advances in Molecular Regulation of Sphingolipids in Plant-fungus Interactions

Shan Tingting1,Chen Xiaomei1,*(),Guo Shunxing1,*(),Tian Lixia1,Yan Lin2,Wang Xin1   

  1. 1. Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
    2. Agricultural Service Center of Changsha Town, Chishui City, Guizhou Province, Chishui 564700, China
  • Received:2018-04-16 Accepted:2018-10-06 Online:2019-11-24 Published:2019-05-01
  • Contact: Chen Xiaomei,Guo Shunxing E-mail:cxm_implad@163.com;sxguo1986@163.com

Abstract:

Sphingolipids are essential components of cell membranes and take part in many critical processes of signal transduction. In plant-fungus interactions, plant sphingolipids mainly induce programmed cell death, whereas fungus sphingolipids induce plant death or plant disease resistance. In this paper, we summarize the structure and metabolic characteristics of plant and fungus sphingolipids as well as advances in the molecular regulation of sphingolipids in plant-fungus interactions. Moreover, the research direction of the role of sphingolipids in plant-fungus symbiosis is also prospected.

Key words: glucosylceramides, pathogenic fungi, programmed cell death, sphingosine

Figure 1

The structure of sphingolipidsNo box: Sphingosine; Solid box: Fatty acid; Dotted box: Polar group"

Figure 2

Sphingosines in the structure of plant sphingolipids (modified from Warnecke and Heinz, 2003)d18:0: Dihydrosphingosine; t18:0: Phytosphingosine; d18:18: Sphing-8-enine; t18:18: 4-hydroxysphing-8-enine; d18:14: Sphingosine; d18:24,8: Sphinga-4,8-dienine"

Figure 3

Sphingolipid biosynthesis in plant and fungi (modified from Michaelson et al., 2016; Rollin-pinheiro et al., 2016) The bold border boxes are unique products of fungi. SPT: Serine palmitoyltransferase; KDHR: 3-ketodihydrosphingosine reductase; CerS: (dihydro) Ceramide synthase; DES: Dihydroceramide desaturase; SK: Sphingosine kinase; SPP: higoine- 1-phosphate phosphatases; SPL: Sphingosine-1-phosphate lyase; LCBH: LCB hydroxylase; CERK: Ceramide kinase; CPP: Ceramide-1-phosphate phosphatases; SMS: Sphingomyelin synthase; SMase: Sphingomyelinases; LCBK: LCB kinase; LCBPP: LCB-1-phosphate phosphatases; LCBPL: LCB-1-phosphate lyase; IPCS: Inositol phosphoryl ceramide synthase; IPUT1: Inositol phosphorylceramide glucuronosyl transferases 1; MIPCS: Mannosylinositol phosphorylceramide synthase; IPT: Inositol phosphoryl transferase; CGT: Galactosyltransferase; GALC: Galactosylceramidase; GCS: Glucosylceramide synthase; GCase: Glucosylceramidase; CDase: Ceramidase"

[1] 郭顺星 ( 2016). 药用植物内生真菌生物学. 北京: 科学出版社. pp. 190-191.
[2] 林久生, 王根轩 ( 2001). 活性氧与植物细胞编程性死亡. 植物生理学通讯 37, 551-555.
[3] 刘润华, 江文波, 余迪求 ( 2009). 植物鞘脂的结构、代谢途径及其功能. 植物学报 44, 619-628.
doi: 10.3969/j.issn.1674-3466.2009.05.013
[4] 田磊, 李元敬, 何兴元, 田春杰 ( 2016). 丛枝菌根真菌脂类代谢对共生信号调控的响应和反馈. 微生物学报 56, 26-34.
doi: 10.13343/j.cnki.wsxb.20150205
[5] 张海涵 ( 2011). 黄土高原枸杞根际微生态特征及其共生真菌调控宿主生长与耐旱响应机制. 博士论文. 杨凌: 西北农林科技大学. pp. 38-40.
[6] Aerts AM, Fran?ois IEJA, Bammens L, Cammue BPA, Smets B, Winderickx J, Accardo S, De Vos DE, Thevissen K ( 2006). Level of M(IP)2C sphingolipid affects plant defensin sensitivity, oxidative stress resistance and chronological life-span in yeast. FEBS Lett 580, 1903-1907.
doi: 10.1016/j.febslet.2006.02.061 pmid: 16527275
[7] Arora P, Porcelli SA ( 2008). A glycan shield for bacterial sphingolipids. Chem Biol 15, 642-644.
doi: 10.1016/j.chembiol.2008.07.001 pmid: 18634999
[8] Barreto-Bergter E, Sassaki GL, De Souza LM ( 2011). Structural analysis of fungal cerebrosides. Front Microbiol 2, 239.
doi: 10.3389/fmicb.2011.00239 pmid: 22164155
[9] Bi FC, Liu Z, Wu JX, Liang H, Xi XL, Fang C, Sun TJ, Yin J, Dai GY, Rong C, Greenberg JT, Su WW, Yao N ( 2014). Loss of ceramide kinase in Arabidopsis impairs defenses and promotes ceramide accumulation and mito- chondrial H2O2 bursts. Plant Cell 26, 3449-3467.
doi: 10.1105/tpc.114.127050 pmid: 25149397
[10] Brandwagt BF, Kneppers TJA, Nijkamp HJJ, Hille J ( 2002). Overexpression of the tomato ASC-1 gene mediates high insensitivity to AAL toxins and fumonisin B1 in tomato hairy roots and confers resistance to Alternaria alternata f. sp. lycopersici in Nicotiana umbratica plants. Mol Plant Microbe Interact 15, 35-42.
doi: 10.1016/j.quascirev.2008.01.010 pmid: 11858172
[11] Chen M, Markham JE, Cahoon EB ( 2012). Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis. Plant J 69, 769-781.
doi: 10.1111/j.1365-313X.2011.04829.x pmid: 22023480
[12] De Zélicourt A, Montiel G, Pouvreau JB, Thoiron S, Delgrange S, Simier P, Delavault P ( 2009). Susceptibility of Phelipanche and Orobanche species to AAL-toxin. Planta 230, 1047-1055.
doi: 10.1007/s00425-009-1008-1 pmid: 19705146
[13] Deepak SA, Raj SN, Umemura K, Kono T, Shetty HS ( 2003). Cerebroside as an elicitor for induced resistance against the downy mildew pathogen in pearl millet. Ann Appl Biol 143, 169-173.
doi: 10.1111/j.1744-7348.2003.tb00283.x
[14] Healey KR, Challa KK, Edlind TD, Katiyar SK ( 2015). Sphingolipids mediate differential echinocandin susceptibility in Candida albicans and Aspergillus nidulans. Anti microb Agents Chemother 59, 3377-3384.
doi: 10.1128/AAC.04667-14 pmid: 25824222
[15] Hechtberger P, Zinser E, Saf R, Hummel K, Paltauf F, Daum G ( 1994). Characterization, quantification and subcellular localization of inositol-containing sphingolipids of the yeast, Saccharomyces cerevisiae. Eur J Biochem 225, 641-649.
doi: 10.1111/j.1432-1033.1994.00641.x pmid: 7957179
[16] Lachaud C, Silva DD, Cotelle V, Thuleau P, Xiong TC, Jauneau A, Brière C, Graziana A, Bellec Y, Faure JD, Ranjeva R, Mazars C ( 2010). Nuclear calcium controls the apoptotic-like cell death induced by D-erythro-sphinganine in tobacco cells. Cell Calcium 47, 92-100.
doi: 10.1016/j.ceca.2009.11.011 pmid: 20022633
[17] Lindahl L, Santos AXS, Olsson H, Olsson L, Bettiga M ( 2017). Membrane engineering of S. cerevisiae targeting sphingolipid metabolism. Sci Rep 7, 41868.
doi: 10.1038/srep41868 pmid: 28145511
[18] Magnin-Robert M, Le Bourse D, Markham J, Dorey S, Clément C, Baillieul F, Dhondt-Cordelier S ( 2015). Modifications of sphingolipid content affect tolerance to hemibiotrophic and necrotrophic pathogens by modulating plant defense responses in Arabidopsis. Plant Physiol 169, 2255-2274.
doi: 10.1104/pp.15.01126 pmid: 26378098
[19] Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J ( 2011). Fungal lipochitooligosaccharide symbiotic signals in arbu- scular mycorrhiza. Nature 469, 58-63.
doi: 10.1038/nature09622 pmid: 21209659
[20] Markham JE, Lynch DV, Napier JA, Dunn TM, Cahoon EB ( 2013). Plant sphingolipids: function follows form. Curr Opin Plant Biol 16, 350-357.
doi: 10.1016/j.pbi.2013.02.009 pmid: 23499054
[21] Michaelson LV, Napier JA, Molino D, Faure JD ( 2016). Plant sphingolipids: their importance in cellular organization and adaption. Biochim Biophys Acta 1861, 1329-1335.
doi: 10.1016/j.bbalip.2016.04.003 pmid: 27086144
[22] Mortimer JC, Yu X, Albrecht S, Sicilia F, Huichalaf M, Ampuero D, Michaelson LV, Murphy AM, Matsunaga T, Kurz S, Stephens E, Baldwin TC, Ishii T, Napier JA, Weber APM, Handford MG, Dupree P ( 2013). Abnormal glycosphingolipid mannosylation triggers salicylic acid mediated responses in Arabidopsis. Plant Cell 25, 1881-1894.
doi: 10.1105/tpc.113.111500 pmid: 23695979
[23] Oguro Y, Yamazaki H, Takagi M, Takaku H ( 2014). Antifungal activity of plant defensin AFP1 in Brassica juncea involves the recognition of the methyl residue in glucosylceramide of target pathogen Candida albicans. Curr Genet 60, 89-97.
doi: 10.1007/s00294-013-0416-8 pmid: 242532931
[24] Olsen I, Jantzen E ( 2001). Sphingolipids in bacteria and fungi. Anaerobe 7, 103-112.
doi: 10.1006/anae.2001.0376
[25] Peer M, Stegmann M, Mueller MJ, Waller F ( 2010). Pseudomonas syringae infection triggers de novo synthesis of phytosphingosine from sphinganine in Arabidopsis thaliana. FEBS Lett 584, 4053-4056.
doi: 10.1016/j.febslet.2010.08.027 pmid: 20732322
[26] Ramamoorthy V, Cahoon EB, Li J, Thokala M, Minto RE, Shah DM ( 2007). Glucosylceramide synthase is essential for alfalfa defensin-mediated growth inhibition but not for pathogenicity of Fusarium graminearum. Mol Microbiol 66, 771-786.
doi: 10.1111/j.1365-2958.2007.05955.x pmid: 17908205
[27] Ramamoorthy V, Cahoon EB, Thokala M, Kaur J, Li J, Shah DM ( 2009). Sphingolipid C-9 methyltransferases are important for growth and virulence but not for sensitivity to antifungal plant defensins in Fusarium graminearum. Eukaryot Cell 8, 217-229.
doi: 10.1016/S0079-6123(05)52014-4 pmid: 19028992
[28] Rittershaus PC, Kechichian TB, Allegood JC, Merrill AH, Hennig M, Luberto C, Del Poeta M ( 2006). Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. J Clin Invest 116, 1651-1659.
doi: 10.1172/JCI27890 pmid: 1466548
[29] Rollin-Pinheiro R, Singh A, Barreto-Bergter E, Poeta MD ( 2016). Sphingolipids as targets for treatment of fungal infections. Future Med Chem 8, 1469-1484.
doi: 10.4155/fmc-2016-0053 pmid: 5558548
[30] Saucedo-García M, Guevara-García A, González-Solís A, Cruz-García F, Vázquez-Santana S, Markham JE, Guadalupe Lozano-Rosas M, Dietrich CR, Ramos-Vega M, Cahoon EB, Gavilanes-Ruíz M ( 2011). MPK6, sphinganine and the LCB2a gene from serine palmitoyltransferase are required in the signaling pathway that mediates cell death induced by long chain bases in Arabidopsis. New Phytol 191, 943-957.
doi: 10.4161/psb.6.10.16981 pmid: 21534970
[31] Sharma L, Prakash H ( 2017). Sphingolipids are dual specific drug targets for the management of pulmonary infections: perspective. Front Immunol 8, 378.
doi: 10.3389/fimmu.2017.00378 pmid: 5372786
[32] Shi LH, Bielawski J, Mu JY, Dong HL, Teng C, Zhang J, Yang XH, Tomishige N, Hanada K, Hannun YA, Zuo J ( 2007). Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res 17, 1030-1040.
doi: 10.4161/psb.4.6.8583 pmid: 18059378
[33] Siebers M, Brands M, Wewer V, Duan YJ, H?lzl G, D?rmann P ( 2016). Lipids in plant-microbe interactions. Biochim Biophys Acta 1861, 1379-1395.
doi: 10.1016/j.bbalip.2016.02.021 pmid: 26928590
[34] Spassieva SD, Markham JE, Hille J ( 2002). The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death. Plant J 32, 561-572.
doi: 10.1046/j.1365-313X.2002.01444.x pmid: 12445127
[35] Tani Y, Amaishi Y, Funatsu T, Ito M, Itonor S, Hata Y, Ashida H, Yamamoto K ( 2014). Structural analysis of cerebrosides from Aspergillus fungi: the existence of galactosylceramide in A. oryzae. Biotechnol Lett 36, 2507-2513.
doi: 10.1007/s10529-014-1631-1 pmid: 25129050
[36] Tartaglio V, Rennie EA, Cahoon R, Wang G, Baidoo E, Mortimer JC, Cahoon EB, Scheller HV ( 2017). Glycosylation of inositol phosphorylceramide sphingolipids is required for normal growth and reproduction in Arabidosis. Plant J 89, 278-290.
doi: 10.1111/tpj.13382 pmid: 27643972
[37] Thevissen K, Fran?ois IEJA, Takemoto JY, Ferket KKA, Meert EMK, Cammue BPA ( 2003). DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiol Lett 226, 169-173.
doi: 10.1016/S0378-1097(03)00590-1 pmid: 13129623
[38] Thevissen K, Warnecke DC, Fran?ois IEJA, Leipelt M, Heinz E, Ott C, Z?hringer U, Thomma BPHJ, Ferket KKA, Cammue BPA ( 2004). Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279, 3900-3905.
doi: 10.1074/jbc.M311165200 pmid: 14604982
[39] Townley HE, McDonald K, Jenkins GI, Knight MR, Leaver CJ ( 2005). Ceramides induce programmed cell death in Arabidopsis cells in a calcium-dependent manner. Biol Chem 386, 161-166.
doi: 10.1515/BC.2005.020 pmid: 15843160
[40] Ueda N ( 2017). Sphingolipids in genetic and acquired forms of chronic kidney diseases. Curr Med Chem 24, 1238-1275.
doi: 10.2174/0929867324666170112114525 pmid: 28078995
[41] Umemura K, Ogawa N, Koga J, Iwata M, Usami H ( 2002). Elicitor activity of cerebroside, a sphingolipid elicitor, in cell suspension cultures of rice. Plant Cell Physiol 43, 778-784.
doi: 10.1093/pcp/pcf090 pmid: 12154140
[42] Umemura K, Ogawa N, Yamauchi T, Iwata M, Shimura M, Koga J ( 2000). Cerebroside elicitors found in diverse phytopathogens activate defense responses in rice plants. Plant Cell Physiol 41, 676-683.
doi: 10.1093/pcp/41.6.676 pmid: 10945336
[43] Virolainen E, Blokhina O, Fagerstedt K ( 2002). Ca 2+-in- duced high amplitude swelling and cytochrome c release from wheat (Triticum aestivum L.) mitochondria under anoxic stress . Ann Bot 90, 509-516.
[44] Wang WM, Yang XH, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dun TM, Wang GL, Bellizzi M, Parsons JF, Morrissey D, Bravo JE, Lynch DV, Xiao SY ( 2008). An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20, 3163-3179.
doi: 10.1105/tpc.108.060053
[45] Warnecke D, Heinz E ( 2003). Recently discovered functions of glucosylceramides in plants and fungi. Cell Mol Life Sci 60, 919-941.
doi: 10.1007/s00018-003-2243-4 pmid: 12827281
[46] Yanagawa D, Ishikawa T, Imai H ( 2017). Synthesis and degradation of long-chain base phosphates affect fumonisin B1-induced cell death in Arabidopsis thaliana. J Plant Res 130, 571-585.
doi: 10.1007/s10265-017-0923-7 pmid: 28303405
[47] Zhu CY, Wang MS, Wang WL, Ruan RJ, Ma HJ, Mao CG, Li HY ( 2014). Glucosylceramides are required for mycelial growth and full virulence in Penicillium digitatum. Biochem Biophys Res Commun 455, 165-171.
doi: 10.1016/j.bbrc.2014.10.142 pmid: 25449268
[1] Hai-Sheng Yuan, Yulian Wei, Liwei Zhou, Wenmin Qin, Baokai Cui, Shuanghui He. Potential distribution and ecological niches of four butt-rot pathogenic fungi in Northeast China [J]. Biodiv Sci, 2019, 27(8): 873-879.
[2] Zhang Xian-sheng. Chinese Scientists Have Made a Great Breakthrough in the Mechanism of Programmed Cell Death [J]. Chin Bull Bot, 2018, 53(4): 445-446.
[3] Zhao Xijuan, Qian Lichao, Liu Yule. Chinese Scientists Made Breakthrough Progresses in Plant Programmed Cell Death [J]. Chin Bull Bot, 2018, 53(4): 447-450.
[4] He Guangming, Deng Xingwang. Death Signal Transduction: Chloroplast-to-Mitochondrion Communication Regulates Programmed Cell Death in Plants [J]. Chin Bull Bot, 2018, 53(4): 441-444.
[5] Xiao Huang, Faqiang Li. Roles of Autophagy in Plant Programmed Cell Death [J]. Chin Bull Bot, 2016, 51(6): 859-862.
[6] Lin Li, Kang Tan, Xiuguang Tang, Xiaoting Chao, Chenxi Wen, Zhuangdong Bai Hualing Feng, Wenzhe Liu, Hui Su. Characterization of Programmed Cell Death During the Senescence of Root Hairs in Arabidopsis [J]. Chin Bull Bot, 2016, 51(2): 194-201.
[7] Xinqiang He, Hong Wu. Mechanisms of Developmental Programmed Cell Death in Plants [J]. Chin Bull Bot, 2013, 48(4): 357-370.
[8] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase [J]. Chin Bull Bot, 2012, 47(5): 543-549.
[9] Hongjuan Jing, Guangzhou Zhou, Xiaorong Tan, Kangkang Ping, Xuejian Ren. Research Progress in Regulation of Reactive Oxygen Species in Plant Autophagy [J]. Chin Bull Bot, 2012, 47(5): 534-542.
[10] MA Huai-Yu, Lü De-Guo, YANG Hong-Qiang. Characteristics of mitochondria and cell death in roots of Malus hupehensis var. pingyiensis under NaCl stress [J]. Chin J Plan Ecolo, 2010, 34(12): 1448-1453.
[11] LI Rong-Feng, CAI Miao-Zhen, LIU Peng, XU Gen-Di, CHEN Min-Yan, LIANG He. PHYTOECOLOGICAL EFFECT OF Al3+ ON THE INDUCTIVITY OF PROGRAMMED CELL DEATH OF BORDER CELLS IN SOYBEAN ROOT [J]. Chin J Plan Ecolo, 2008, 32(3): 690-697.
[12] Yuliang Chen;Feixiong Zhang;Guiyou Zhang*. Key Caspase-like Enzymes in Programmed Cell Death in Plants [J]. Chin Bull Bot, 2008, 25(05): 616-623.
[13] Yu Kong;Zhong Wang*;Yunjie Gu;Yuexia Wang. Research Progress on Aerenchyma Formation in Plant Roots [J]. Chin Bull Bot, 2008, 25(02): 248-253.
[14] . Developmental Programmed Cell Death in Plants [J]. Chin Bull Bot, 2005, 22(增刊): 22-28.
[15] CHENG Hong-Yan SONG Song-Quan. Advances in Nitric Oxide Biology of Plants [J]. Chin Bull Bot, 2005, 22(06): 723-737.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Zhong-Hua YU Jing-Hua YANG Feng-Jian ZU Yuan-Gang. Metabolic Biology of Plant Alkaloids[J]. Chin Bull Bot, 2003, 20(06): 696 -702 .
[2] Chunlin Long;Meilan Li . Status and Conservation Strategies of Community Plant Genetic Resources—A Case Study in Manlun, a Dai Village in Xishuangbanna[J]. Chin Bull Bot, 2006, 23(2): 177 -185 .
[3] KONG Hai-Yan JIA Gui-Xia WEN Yue-Ge. The Role of Calcium in Flower Development[J]. Chin Bull Bot, 2003, 20(02): 168 -177 .
[4] CHEN Jian-San and ZHAO Shi-Xu. A Study Cell Embryology of Rice 84-15[J]. Chin Bull Bot, 1999, 16(03): 284 -287 .
[5] Yanqing Zhou, Wanshen Wang, Xiangnan Wang, Hongying Duan. Recent Progress in DNA Molecular Markers and Gene Functions of Rehmannia glutinosa[J]. Chin Bull Bot, 2015, 50(5): 665 -672 .
[6] Han Yeliang. A Discussion on the Northern Boundary of the Subtropical Evergreen Broad-leaf Forest Zone in Anhui Province (Abstract)[J]. Chin J Plan Ecolo, 1981, 5(1): 54 -57 .
[7] Li Yi-de, Zeng Qing-bo, Wu Zhong-min, Du Zhi-hu, Zhou Guang-yi, Chen Bu-feng, Zhang Zhen-cai, Chen Huan-qiang. Study on Biomass of Tropical Mountain Rain Forest in Jianfengling, Hainan Province[J]. Chin J Plan Ecolo, 1992, 16(4): 293 -300 .
[8] Deng Lianhe, Zhou Xincheng. Suggestion to Protect the Community Composed of Rare Tree Species of Houhe Forest Area in Wufeng County, Hubei Province[J]. Chin J Plan Ecolo, 1982, 6(1): 84 .
[9] JIANG Xiao-Jie, HU Yan-Ling, HAN Jian-Qiu, and ZHOU Yu-Mei. Effects of warming on carbon, nitrogen and phosphorus stoichiometry in tundra soil and leaves of typical plants[J]. Chin J Plan Ecolo, 2014, 38(9): 941 -948 .
[10] LIN Lu-Xiang, CAO Min, TANG Yong, FU Xian-Hui, ZHANG Jian-Hou. Tree Species Diversity in Abandoned Swidden Fields of Xishuangbanna, SW China[J]. Chin J Plan Ecolo, 2002, 26(2): 216 -222 .