Chin Bull Bot ›› 2016, Vol. 51 ›› Issue (6): 757-763.doi: 10.11983/CBB15209

Previous Articles     Next Articles

Dissection of Quantitative Trait Loci for Cooking and Eating Quality Traits in Oryza sativa subsp. japonica

Xiaoyun Yao1, Jiayu Wang1*, Jin Liu1, Qi Wang1, Xin Jiang1, Shukun Jiang2, Zhengjin Xu1   

  1. 1Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture, Shenyang 110866, China
    2Cultivation and Farming Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
  • Received:2015-11-29 Accepted:2016-03-15 Online:2016-12-02 Published:2016-11-01
  • Contact: Wang Jiayu E-mail:ricewjy@126.com
  • About author:

    # Co-first authors

Abstract:

Recombinant inbred lines derived from the cross between Shennong265 (Japonica) and Lijiangxintuanheigu (Japonica) were used to identify quantitative trait loci (QTL) for 12 cooking and eating quality traits. In total, 29 QTLs were detected on chromosomes 1, 2, 3, 4, 5, 6, 7, 9, 10, 11 and 12, with limit of detection values ranging from 2.50 to 16.47, additive effect from -132.69 to 471.85, and range of individually explained phenotypic variation from 10.36% to 73.24%. One pleiotropic QTL cluster was detected on chromosome 6 (RM508-RM253), which had higher phenotypic variation and an additive effect; QTL qAC6 explained 73.24% of the phenotypic variation. Two QTLs, qCCS10 and qCTS10, were detected on chromosome 10 (PM166-RM258); they affected taste and comprehensive score, respectively. In addition, 15 QTLs associated with Rapid Visco Analyzer (RVA) profile characteristics were identified; 3 QTLs, located on chromosome 6 (RM253-RM402), explained more than 12% of the phenotypic variation. These results will be helpful to further enrich and research the molecular genetic mechanism of cooking and eating quality traits in rice.

Table 1

Distribution of cooking and eating qualitiy traits and RVA (Rapid Visco Analyzer) profile characteristics in parients and RILs populations of Oryza sativa"

Traits Parents RILs
SN265 LTH Mean±SD Range Skewness Kurtosis
Protein, Pr 9.00 9.30 9.23±0.14 8.90-9.60 -0.05 0.98
Amylase content, AC 18.10 12.70 15.18±2.70 9.40-22.10 0.42 0.40
Cooked appearance, CA 6.90 1.00 4.04±1.86 0.20-6.80 -0.83 -0.50
Cooked taste score, CTS 7.10 1.80 4.43±1.69 0.20-6.90 -1.01 0.16
Cooked comprehensive score, CCS 75.60 35.80 54.19±11.20 30.00-72.70 -0.71 -0.29
Peak paste viscosity, PKV 2475.00 2421.00 2513.57±271.09 1929-3037.00 -0.19 -0.79
Hot paste viscosity , HPV 1768.00 1923.00 1860.19±163.97 1527-2285.00 0.39 -0.36
Breakdown viscosity, BDV 707.00 498.00 653.38±208.03 213-1219.00 0.28 0.26
Cool paste viscosity, CPV 2872.00 3258.00 3057.31±325.39 1836-3601.00 -1.37 3.06
Setback viscosity, SBV 1104.00 1335.00 1214.7±214.55 1115-1600.00 -2.30 1.62
Peak time, PeT 6.07 6.13 6.15±0.14 5.73-6.47 -0.32 0.23
Pasting temperature, PaT 86.60 87.35 86.07±4.17 77.60-91.50 -0.89 -0.79

Figure 1

Chromosome location of putative QTL for cooking and eating quality traits and RVA (Rapid Visco Analyzer) profile characteristics of Oryza sativa"

Table 2

The QTL of cooking and eating quality traits and RVA (Rapid Visco Analyzer) profile characteristics of Oryza sativa"

Traits Loci Chr. Interval LOD value PVE (%) Additive effect
Protein content, Pr qPr7 7 RM478-RM429 2.53 14.93 0.05
qPr12 12 RM415-RM20A 4.31 28.45 -0.07
Amylase content, AC qAC6 6 RM253-RM402 11.29 73.24 2.30
Cooked appearance, CA qCA6 6 RM589-RM204 6.86 17.76 0.78
qCA7 7 RM214-RM533 6.45 26.64 0.96
qCA9 9 PM397-PM399 6.00 16.74 0.76
qCA12 12 RM415-RM20A 6.10 18.35 0.81
Cooked taste score, CTS qCTS3 3 PM380-RM426 7.64 32.01 0.97
qCTS6 6 RM508-RM589 8.26 21.03 0.77
qCTS7 7 RM214-RM533 3.95 11.06 0.56
qCTS10 10 PM166-RM258 5.68 16.32 0.68
Cooked comprehensive score, CCS qCCS3 3 PM380-RM426 4.76 28.50 6.04
qCCS6 6 RM508-RM589 7.56 23.00 5.34
qCCS10 10 PM166-RM258 6.56 23.18 5.37
Peak paste viscosity, PKV qPKV1 1 RM562-RM5 2.94 23.72 131.30
Hot paste viscosity, HPV qHPV1 1 PM423-PM370 4.76 25.14 -86.67
qHPV12 12 RM453-PM419 3.49 18.95 -71.12
Breakdown viscosity, BDV qBDV6 6 RM253-RM402 7.80 41.20 -132.69
Cool paste viscosity, CPV qCPV4 4 RM349-RM559 4.23 28.31 172.29
qCPV6 6 RM439-RM494 4.03 39.51 471.85
Setback viscosity, SBV qSBV4 4 RM255-RM349 2.54 17.17 88.29
qSBV6 6 RM439-RM494 5.40 50.08 431.29
qSBV11 11 PM365-PM418 3.31 35.65 270.29
Peak time, PeT qPeT1 1 RM297-RM486 2.50 11.81 -0.05
qPeT11 11 PM418-RM144 3.79 59.18 0.13
Pasting temperature, PaT qPaT2 2 RM327-PM123 16.47 34.01 -4.30
qPaT5 5 RM169-RM516 13.03 10.36 -4.47
qPaT6 6 RM253-RM402 2.50 12.55 1.47
qPaT11 11 PM365-PM418 12.87 34.02 4.37

Table 3

Cooking and eating quality related traits QTL pleiotropic region on the chromosome of Oryza sativa"

Chromosome Interval Traits Pleiotropic QTL
3 PM380-RM426 Cooked taste score, cooked comprehensive score qCTS3, qCCS3
6 RM253-RM402 Amylase content, cooked appearance, cooked taste score, cooked comprehensive score, breakdown viscosity,
pasting temperature
qAC6, qCA6, qCTS6, qCCS6, qBDV6, qPaT6
6 RM439-RM494 Cool paste viscosity, setback viscosity qCPV6, qSBV6
7 RM214-RM533 Cooked appearance, cooked taste score qCA7, qCTS7
10 PM166-RM258 Cooked appearance, cooked comprehensive score qCTS10, qCCS10
11 PM365-RM144 Setback viscosity, peak time, pasting temperature qSBV11, qPeT11, qPaT11
12 RM415-RM419 Protein cotent, cooked appearance, hot paste viscosity qPr12, qCA12, qHPV12
[1] 种康, 王台, 钱前, 王小菁, 左建儒, 顾红雅, 姜里文, 陈之端, 白永飞, 杨淑华, 孔宏智, 陈凡, 萧浪涛 (2015). 2014年中国植物科学若干领域重要研究进展. 植物学报 50, 412-459.
[2] 高辉, 马群, 李国业, 杨雄, 李雪侨, 殷春渊, 李敏, 张庆, 张洪程, 戴其根, 魏海燕 (2010). 氮肥水平对不同生育类型粳稻稻米蒸煮食味品质的影响. 中国农业科学 43, 4543-4552.
[3] 姜树坤, 黄成, 徐正进, 陈温福 (2010). 粳稻株高QTL与赤霉素和油菜素内酯合成及信号转导基因相关分析. 中国农业科学 43, 2829-2838.
[4] 康美花, 曹丰生, 高珍珠, 陈红萍, 刘建华, 邓人启 (2010). 稻米蒸煮食味品质性状遗传研究进展. 安徽农学通报 16, 68-70.
[5] 邵高能, 唐绍清, 焦桂爱, 罗炬, 唐傲, 胡培松 (2009). 稻米蒸煮品质性状的QTL定位. 中国水稻科学 23, 94-98.
[6] 吴长明, 孙传清, 陈亮, 李自超, 王象坤 (2000). 水稻直链淀粉含量与籼粳分化度的QTL及其相互关系研究. 中国农业大学学报 5, 6-11.
[7] 吴长明, 孙传清, 王象坤, 李自超, 付秀林, 张强 (2003). 稻米食味品质性状的QTL分析. 吉林农业科学 28, 6-14.
[8] 徐铨, 唐亮, 福雇阳, 黄瑞冬, 陈温福, 徐正进 (2013). 粳稻食味品质改良研究现状与展望. 作物学报 39, 961-968.
[9] 杨亚春, 倪大虎, 宋丰顺, 李莉, 冯光, 李泽福, 杨剑波 (2012a). 两个环境下糙米和精米蛋白质含量的QTL分析. 中国水稻科学 26, 351-355.
[10] 杨亚春, 倪大虎, 宋丰顺, 李莉, 陆徐忠, 李泽福, 杨剑波 (2012b). 不同生态环境下稻米淀粉RVA谱特征值的QTL定位分析. 作物学报 38, 264-274.
[11] 张佳, 程海涛, 徐海, 夏英俊, 刘春香, 徐正进 (2015). 籼粳稻杂交后代蒸煮食味品质与亚种分化的关系. 中国水稻科学 29, 167-173.
[12] 张巧凤, 张亚东, 朱镇, 赵凌, 赵庆勇, 许凌, 王才林 (2007). 稻米淀粉黏滞性(RVA谱)特征值的遗传及QTL定位分析. 中国水稻科学 21, 591-598.
[13] 张涛, 郑家奎, 吴先军, 蒋开锋, 杨乾华, 陈温福, 杨莉 (2009). 水稻糙米蛋白质含量的QTL定位. 分子植物育种 7, 67-72.
[14] 张现伟, 杨莉, 张涛, 蒋开锋, 王贵学, 郑家奎, 倪先林, 田翠, 曹应江 (2009). 水稻籽粒锌含量的QTL定位. 植物学报 44, 594-600.
[15] 张欣, 施利利, 丁得亮, 王松文, 崔晶 (2010a). 74份优质粳稻品种的理化特征和食味特性研究. 食品科技 9, 178-181.
[16] 张欣, 施利利, 刘晓宇, 丁得亮, 王松文, 崔晶 (2010b). 不同施肥处理对水稻产量、食味品质及蛋白质组分的影响. 中国农学通报 26, 104-108.
[17] 张永生, 江玲, 刘喜, 刘世家, 陈亮明, 翟虎渠, 万建民 (2010). 优质水稻品种越光中控制稻米淀粉RVA谱特征值的QTL分析. 中国水稻科学 24, 137-142.
[18] 中华人民共和国农业部 (1989). 中华人民共和国农业部部标准(NY147-88): 米质测定方法. 北京: 中国标准出版社.
[19] 朱霁晖, 张昌泉, 顾铭洪, 刘巧泉 (2015). 水稻Wx基因的等位变异及育种利用研究进展. 中国水稻科学 29, 431-438.
[20] 朱智伟, 陈能, 王丹英, 章秀福, 姚青, 闵捷 (2004). 不同类型水稻品质性状变异特性及差异性分析. 中国水稻科学 18, 315-320.
[21] Fan CC, Yu XQ, Xing YZ, Xu CG, Luo LJ, Zhang QF (2005). The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population.Theor Appl Genet 110, 1445-1452.
[22] Gao ZY, Zeng DL, Cheng FM, Tian ZX, Guo LB, Su Y, Yan MX, Jiang H, Dong GJ, Huang YC, Han B, Li JY, Qian Q (2011). ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice.J Integr Plant Biol 53, 756-765.
[23] Guo YM, Mu P, Liu JF, Lu YX, Li ZC (2007). QTL mapping and Q×E interactions of grain cooking and nutrient qualities in rice under upland and lowland environments.J Genet Genomics 34, 420-428.
[24] Leng YJ, Xue DW, Yang YL, Hu SK, Su Y, Huang LC, Wang L, Zheng TT, Zhang GH, Hu J, Gao ZY, Guo LB, Qian Q, Zeng DL (2014). Mapping of QTLs for eating and cooking quality-related traits in rice (Oryza sativa L.).Euphytica 197, 99-108.
[25] Mccouch SR, Cho YG, Yano M, Paule E, Blinstrue M, Morishima HM, Kinosita T (1997). Report on QTL nomenclature.Rice Genet News Lett 14, 11-13.
[26] Sun SY, Hao W, Lin HX (2006). Identification of QTLs for cooking and eating quality of rice grain.Rice Sci 13, 161-169.
[27] Wan XY, Wan JM, Su CC, Wang CM, Shen WB, Li JM (2004). QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines.Th- eor Appl Genet 110, 71-79.
[28] Wang JK, Li HH, Zhang LY (.
[29] Ye GY, Liang SS, Wan JM (2010). QTL mapping of protein content in rice using single chromosome segment substitution lines.Theor Appl Genet 121, 741-750.
[30] Zhang WW, Bi JC, Chen LM, Zheng LN, Ji SL, Xia YM, Xie K, Zhao ZG, Wang YH, Liu LL, Jiang L, Wan JM (2008). QTL mapping for crude protein and protein fraction contents in rice (Oryza sativa L.).J Cereal Sci 48, 539-547.
[31] Zheng X, Wu JG, Lou XY, Xu HM, Shi CH (2008). The QTL
[32] analysis on maternal and endosperm genome and their environmental interactions for characters of cooking quality in rice (Oryza sativa L.).Theor Appl Genet 116, 335-342.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Kang Le. The Chemical Defenses of plants to phytophagous Insects[J]. Chin Bull Bot, 1995, 12(04): 22 -27 .
[2] HUANG Kai-Yao;GUO Hou-Liang and YI Ping. Effects of Salt Stress on Cell Structure and N2 Fixation in Blue-Green Alga Anabaena cylindrica[J]. Chin Bull Bot, 1998, 15(03): 54 -56 .
[3] Zhang Jing-tan. Abbreviations for Some Commonly Used Term[J]. Chin Bull Bot, 1985, 3(01): 57 -58 .
[4] DU Gui-Sen;ZANG Yu-Long and WANG Mei-Zhi. Study on Spore Morphology of 6 Species of The Family Pottiaceae in China[J]. Chin Bull Bot, 1998, 15(03): 57 -60 .
[5] TIAN Xin-Zhi. On Plant Illustration and Artistic Drawing and Painting[J]. Chin Bull Bot, 1999, 16(04): 470 -476 .
[6] LI Xiu-Lan WU Cheng DENG Xiao-Jian YANG Zhi-Rong. Plant Height Genes and Their Progress of Molecular Biology Research in Rice[J]. Chin Bull Bot, 2003, 20(03): 264 -269 .
[7] LIU Hong-Tao LI Bing ZHOU Ren-Gang. Calcium_calmodulin Signal Transduction Pathway and Environment Stimulation[J]. Chin Bull Bot, 2001, 18(05): 554 -559 .
[8] Renyi Gui;Yadi Liu;Xiaoqin Guo;Haibao Ji;Yue Jia;Mingzeng Yu;Wei Fang*. Effects of Dose of 137Cs-γ Irradiation on Chlorophyll Fluorescence Parameters for Leaves of Seedlings of Phyllostachys heterocycla ‘Pubescens’[J]. Chin Bull Bot, 2010, 45(01): 66 -72 .
[9] Sanxiong Fu;Cunkou Qi*. Identification of Genes Differentially Expressed in Seeds of Brassica napus Planted in Nanjing and Lhasa by Arabidopsis Microarray[J]. Chin Bull Bot, 2009, 44(02): 178 -184 .
[10] Xiaofen Sun;Yu Chen;Junsong Pan;Yuliang Wang;Kexing Sun;Kexuan Tang*;Run Cai*. Correlation and Path Analyses of Vindoline with Major Agronomic Traits in Catharanthus roseus[J]. Chin Bull Bot, 2009, 44(01): 96 -102 .