Chinese Bulletin of Botany ›› 2016, Vol. 51 ›› Issue (6): 743-756.DOI: 10.11983/CBB16019

Previous Articles     Next Articles

EARLY SENESCENCE 1 Participates in the Expression Regulation of Circadian Clock Genes and Response to Stress in Rice

Jiangmin Xu1†, Hongzhen Jiang1,2†, Han Lin1†, Miaomiao Huang1, Qiaoli Fu1, Dali Zeng2*, Yuchun Rao1,2*   

  1. 1College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; 
    2State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
  • Received:2016-01-26 Revised:2016-05-28 Online:2016-11-01 Published:2016-12-02
  • Contact: Dali Zeng, Yuchun Rao

Abstract: Plant circadian clock genes help control the activities of all growth stages and development. We cloned EARLY SENESCENCE 1 (ES1), which affects water loss in rice, and used a segregation mutant es1-1 and the wild type (NPB) for microarray assay of the root and leaf tissue. The mutant es1-1 had 42 major upregulated genes and 14 major downregulated genes involved in 24 metabolic pathways, including regulating the circadian clock (n=4), methane metabolism (n=3), and phenylalanine metabolism (n=3). On expression profiling of rice circadian clock-related genes, the expression in es1-1 differed from that in the wild type. After cold treatment, es1-1 exhibited more cold tolerance than the wild type, and expression analysis of the circadian clock-related genes revealed changes in es1-1 and NPB. Moreover, after inoculating Xanthomonas oryzae pv. oryzae, es1-1 showed enhanced resistance during tillering as compared with the wild type. ES1 may participate in the expression regulation of rice circadian clock genes, as well as response to some certain stress, which provide further clues for research of rice circadian clock genes.