%A %T Dissection of Quantitative Trait Loci for Cooking and Eating Quality Traits in Oryza sativa subsp. japonica %0 Journal Article %D 2016 %J Chinese Bulletin of Botany %R 10.11983/CBB15209 %P 757-763 %V 51 %N 6 %U {https://www.chinbullbotany.com/CN/abstract/article_2933.shtml} %8 2016-11-01 %X

Recombinant inbred lines derived from the cross between Shennong265 (Japonica) and Lijiangxintuanheigu (Japonica) were used to identify quantitative trait loci (QTL) for 12 cooking and eating quality traits. In total, 29 QTLs were detected on chromosomes 1, 2, 3, 4, 5, 6, 7, 9, 10, 11 and 12, with limit of detection values ranging from 2.50 to 16.47, additive effect from -132.69 to 471.85, and range of individually explained phenotypic variation from 10.36% to 73.24%. One pleiotropic QTL cluster was detected on chromosome 6 (RM508-RM253), which had higher phenotypic variation and an additive effect; QTL qAC6 explained 73.24% of the phenotypic variation. Two QTLs, qCCS10 and qCTS10, were detected on chromosome 10 (PM166-RM258); they affected taste and comprehensive score, respectively. In addition, 15 QTLs associated with Rapid Visco Analyzer (RVA) profile characteristics were identified; 3 QTLs, located on chromosome 6 (RM253-RM402), explained more than 12% of the phenotypic variation. These results will be helpful to further enrich and research the molecular genetic mechanism of cooking and eating quality traits in rice.