植物学报 ›› 2019, Vol. 54 ›› Issue (3): 328-334.doi: 10.11983/CBB18117

• 研究报告 • 上一篇    下一篇

石刁柏核质体DNA的生物信息学分析及染色体定位

程广前1,†,贾克利1,2,†,李娜1,邓传良1,李书粉1,高武军1,*   

  1. 1. 河南师范大学生命科学学院, 新乡 453007
    2. 新乡医学院三全学院, 新乡 453003
  • 收稿日期:2018-05-11 接受日期:2018-08-06 出版日期:2019-05-01 发布日期:2019-11-24
  • 通讯作者: 高武军
  • 基金资助:
    国家自然科学基金(31470334和河南省高校科技创新团队支持计划No.17IRTSTHN017)

Bioinformatics Analysis and Chromosome Location of Nuclear Integrants of Plastid DNA in Asparagus officinalis

Cheng Guangqian1,†,Jia Keli1,2,†,Li Na1,Deng Chuanliang1,Li Shufen1,Gao Wujun1,*   

  1. 1. College of Life Sciences, Henan Normal University, Xinxiang 453007, China
    2.SanQuan College, Xinxiang Medical University, Xinxiang 453003, China
  • Received:2018-05-11 Accepted:2018-08-06 Online:2019-05-01 Published:2019-11-24
  • Contact: Gao Wujun

摘要:

在植物基因组中, 叶绿体DNA (cpDNA)序列可以向核基因组转移成为核质体DNA (NUPT)。NUPTs在植物染色体(包括性染色体)的演化过程中具有重要作用, 但目前相关研究比较缺乏。以雌雄异株植物石刁柏(Asparagus officinalis)为材料, 采用生物信息学方法对其核基因组NUPTs进行注释及分析, 并选取叶绿体基因组反向重复区(IR) 2个片段进行染色体定位。结果表明, 石刁柏核基因组中有2 239个NUPTs序列的插入, 总长度为565 970 bp, 占核基因组的0.047%。不同染色体上插入的NUPTs数量存在较大差异, Y染色体上的NUPTs数量、密度及总长度均高于其它染色体, 表明NUPTs在石刁柏性(Y)染色体上累积的更多。石刁柏叶绿体基因组中的IR区、大单拷贝区(LSC)和小单拷贝区(SSC)序列均能够向核基因组转移, 但IR区序列转移频率更高。此外, 对2个IR区的叶绿体序列进行荧光原位杂交, 其中AocpIR1主要分布在所有染色体的着丝粒部位, 而AocpIR2特异性分布在Y染色体上。研究结果为深入揭示石刁柏基因组的结构及其性染色体的演化奠定了坚实的基础。

关键词: 石刁柏, 生物信息学分析, 核质体DNA, NUPTs, 性染色体

Abstract:

Chloroplast DNA (cpDNA) can transfer into the plant nuclear genome to form nuclear integrants of plastid DNA (NUPTs). NUPTs may play a role in plant sex chromosome evolution. However, few studies have focused on this research area. In this study, we annotated and analyzed NUPTs in the genome of dioecious Asparagus officinalis and located two cpDNA fragments on chromosomes. The nuclear genome of A. officinalis contains 2 239 NUPT insertions, with total length 565 970 bp, accounting for 0.047% of the genome. The amount of NUPTs differs among chromosomes; the number, density, and the average length of NUPTs on the Y chromosome were all higher than those on the other chromosomes, which indicates more accumulation of NUPTs on sex chromosomes. All regions of inverted repeats (IRs) and small and large single copy regions of cpDNA could transfer into nuclear DNA; however, the IR region showed the highest transfer frequency. Furthermore, FISH analysis of two cpDNA sequences from IR regions showed that AocpIR1 distributed mainly on the centromeres of all chromosomes, whereas AocpIR2 specifically located on sex chromosomes of A. officinalis. The data provide an important foundation for determining the genome structure and sex chromosome evolution of A. officinalis.

Key words: Asparagus officinalis, bioinformatic analysis, nuclear integrants of plastid DNA, NUPTs, sex chromosome

图1

石刁柏不同染色体核质体DNA (NUPTs)长度(A)和数目(B)"

图2

石刁柏基因组核质体DNA (NUPTs)在染色体上的分布模式"

表1

石刁柏核基因组核质体DNA (NUPTs)的叶绿体基因组来源分析"

IR LSC SSC
Total sequence length (bp) 26471 83821 17904
Number of NUPTs 726 1227 286
Average density (No./kb) 27.9 14.6 15.9
Average length of NUPTs (bp) 241 258 246
The length of NUPTs (bp) 175215 316626 70394

图3

石刁柏2个叶绿体反向重复区(IR)序列的PCR扩增1, 2分别代表AocplR1和AocplR2的扩增结果。"

图4

AocpIR1和AocpIR2在石刁柏有丝分裂中期染色体上的定位(A), (E) 45S rDNA杂交信号图; (B), (F) AocpIR1和AocpIR2杂交信号图; (C), (G) 合成图; (D), (H) 核型图。Bars=10 μm"

[1] 高东迎, 何冰, 孙立华 ( 2007). 水稻转座子研究进展. 植物学通报 24, 667-676.
doi: 10.3969/j.issn.1674-3466.2007.05.016
[2] 李巧丽, 延娜, 宋琼, 郭军战 ( 2018). 鲁桑叶绿体基因组序列及特征分析. 植物学报 53, 94-103.
doi: 10.11983/CBB16247
[3] 李书粉, 李旭, 王冰肖, 袁金红, 邓传良, 高武军 ( 2016). 石刁柏雄性偏向核质体DNA的克隆与分析. 西北植物学报 36, 2385-2390.
doi: 10.7606/j.issn.1000-4025.2016.12.2385
[4] Abbott JK, Nordén AK, Hansson B ( 2017). Sex chromosome evolution: historical insights and future perspectives. Proc Roy Soc B 284, 20162806.
doi: 10.1098/rspb.2016.2806
[5] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ ( 1990). Basic local alignment search tool. J Mol Biol 215, 403-410.
doi: 10.1016/S0022-2836(05)80360-2
[6] Doyle JJ, Doyle JL ( 1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19, 11-15.
[7] Feschotte C, Pritham EJ ( 2007). DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41, 331-368.
doi: 10.1146/annurev.genet.40.110405.090448 pmid: 18076328
[8] Guo XY, Ruan SL, Hu WM, Cai DG, Fan LJ ( 2008). Chloroplast DNA insertions into the nuclear genome of rice: the genes, sites and ages of insertion involved. Funct Integr Genomics 8, 101-108.
doi: 10.1007/s10142-007-0067-2
[9] Harkess A, Zhou JS, Xu CY, Bowers JE, van der Hulst R, Ayyampalayam S, Mercati F, Riccardi P, McKain MR, Kakrana A, Tang HB, Ray J, Groenendijk J, Arikit S, Mathioni SM, Nakano M, Shan HY, Telgmann-Rauber A, Kanno A, Yue Z, Chen HX, Li WQ, Chen YL, Xu XY, Zhang YP, Luo SC, Chen HL, Gao JM, Mao ZC, Pires JC, Luo MZ, Kudrna D, Wing RA, Meyers BC, Yi KX, Kong HZ, Lavrijsen P, Sunseri F, Falavigna A, Ye Y, Leebens-Mack JH, Chen GY ( 2017). The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat Commun 8, 1279.
doi: 10.1038/s41467-017-01064-8 pmid: 29093472
[10] Kejnovsky E, Hobza R, Cermak T, Kubat Z, Vyskot B ( 2009). The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity 102, 533-541.
doi: 10.1038/hdy.2009.17
[11] Kejnovsky E, Kubat Z, Hobza R, Lengerova M, Sato S, Tabata S, Fukui K, Matsunaga S, Vyskot B ( 2006). Accumulation of chloroplast DNA sequences on the Y chromosome of Silene latifolia. Genetica 128, 167-175.
doi: 10.1007/s10709-005-5701-0 pmid: 17028949
[12] Kleine T, Maier UG, Leister D ( 2009). DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annu Rev Plant Biol 60, 115-138.
doi: 10.1146/annurev.arplant.043008.092119 pmid: 19014347
[13] Li SF, Zhang GJ, Yuan JH, Deng CL, Gao WJ ( 2016). Repetitive sequences and epigenetic modification: inseparable partners play important roles in the evolution of plant sex chromosomes. Planta 243, 1083-1095.
doi: 10.1007/s00425-016-2485-7
[14] L?ptien H ( 1979). Identification of the sex chromosome pair in asparagus ( Asparagus officinalis L.). Z Pflanzenzüecht 82, 162-173.
[15] Martis MM, Klemme S, Banaei-Moghaddam AM, Blattner FR, Macas J, Schmutzer T, Scholz U, Gundlach H, Wicker T, ?imková H, Novák P, Neumann P, Kubaláková M, Bauer E, Haseneyer G, Fuchs J, Dole?el J, Stein N, Mayer KFX, Houben A ( 2012). Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc Natl Acad Sci USA 109, 13343-13346.
doi: 10.1073/pnas.1204237109
[16] Matsuo M, Ito Y, Yamauchi R, Obokata J ( 2005). The rice nuclear genome continuously integrates, shuffles, and eli- minates the chloroplast genome to cause chloroplast- nuclear DNA flux. Plant Cell 17, 665-675.
doi: 10.1105/tpc.104.027706
[17] Michalovova M, Vyskot B, Kejnovsky E ( 2013). Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization. Heredity 111, 314-320.
doi: 10.1038/hdy.2013.51 pmid: 23715017
[18] Richly E, Leister D ( 2004). NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21, 1081-1084.
doi: 10.1093/molbev/msh110 pmid: 15014143
[19] Sheng WT, Chai XW, Rao YS, Tu XT, Du SG ( 2017). Complete chloroplast genome sequence of asparagus ( Asparagus officinalis L.) and its phylogenetic position within asparagales. J Plant Breed Genet 5, 121-128.
[20] Steflova P, Hobza R, Vyskot B, Kejnovsky E ( 2014). Strong accumulation of chloroplast DNA in the Y chromosomes of Rumex acetosa and Silene latifolia. Cytogenet Genome Res 142, 59-65.
[21] Timmis JN, Ayliffe MA, Huang CY, Martin W ( 2004). Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5, 123-135.
[22] VanBuren R, Ming R ( 2013). Organelle DNA accumulation in the recently evolved papaya sex chromosomes. Mol Genet Genomics 288, 277-284.
doi: 10.1007/s00438-013-0747-7
[23] Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM ( 2008). Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol 8, 36.
doi: 10.1186/1471-2148-8-36 pmid: 2275221
[24] Yoshida T, Furihata HY, Kawabe A ( 2014). Patterns of genomic integration of nuclear chloroplast DNA fragments in plant species. DNA Res 21, 127-140.
doi: 10.1093/dnares/dst045 pmid: 3989485
[1] 秦力, 陈景丽, 潘长田, 叶蕾, 卢钢. 植物性染色体进化及性别决定基因研究进展[J]. 植物学报, 2016, 51(6): 841-848.
[2] 汪丽虹 王星 崔凯荣 焦成瑾 王亚馥. 石刁柏及党参体细胞胚发生中的淀粉代谢动态[J]. 植物学报, 1996, 13(01): 41-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yi Deng, Wei Wang, Wen-Qing Li, Chuan Xia, Hong-Ze Liao, Xue-Qin Zhang and De Ye. MALE GAMETOPHYTE DEFECTIVE 2, Encoding a Sialyltransferase-like Protein, is Required for Normal Pollen Germination and Pollen Tube Growth in Arabidopsis[J]. Journal of Integrative Plant Biology, 2010, 52(9): 829 -843 .
[2] Short Report on the National Conference of the Haploid Breeding of Tobacco. Successful Induction of Shoot Differentiation from the Calli of Soybean and Pea Hypocotyl[J]. Journal of Integrative Plant Biology, 1974, 16(4): .
[3] 唐永康, 郭双生, 林杉, 艾为党, 秦利锋. 低压环境中植物的生长特性及适应机理研究进展[J]. 植物生态学报, 2011, 35(8): 872 -881 .
[4] Gao-Qiang LIU and Ke-Chang ZHANG. Mechanisms of the Anticancer Action of Ganoderma lucidum (Leyss. Ex Fr.) Karst.: A New Understanding[J]. Journal of Integrative Plant Biology, 2005, 47(2): .
[5] 刘贵华, 周进, 李伟, 郭友好. 普通野生稻种群恢复的生态学研究 II.种群动态[J]. 植物生态学报, 2002, 26(3): 372 -376 .
[6] 关正君, 裴蕾, 马库斯·施密特, 魏伟. 合成生物学生物安全风险评价与管理[J]. 生物多样性, 2012, 20(2): 138 -150 .
[7] 胡小文, 王娟, 王彦荣. 野豌豆属4种植物种子萌发的积温模型分析[J]. 植物生态学报, 2012, 36(8): 841 -848 .
[8] 徐波, 王金牛, 石福孙, 高景, 吴宁. 青藏高原东缘野生暗紫贝母生物量分配格局对高山生态环境的适应[J]. 植物生态学报, 2013, 37(3): 187 -196 .
[9] Kristen E. BAIRD,Vicki A. FUNK,Jun WEN,Andrea WEEKS. [J]. Journal of Systematics and Evolution, 2010, 48(3): 161 -174 .
[10] 杨文 何如洲 程剑平 郭荣发 邝雪梅. 甘蔗过氧化物酶同工酶分析[J]. 植物学报, 1998, 15(06): 65 -69 .