植物学报 ›› 2018, Vol. 53 ›› Issue (6): 782-792.doi: 10.11983/CBB17258

• 研究报告 • 上一篇    下一篇

基于孢子形态和分子证据探讨鳞盖蕨属(碗蕨科)系统分类

罗俊杰1,2, 王莹1,2, 商辉1,3, 周喜乐4, 韦宏金1,3, 黄素楠2, 顾钰峰1,2, 金冬梅1,3, 戴锡玲2, 严岳鸿1,3,*()   

  1. 1上海辰山植物园, 中国科学院上海辰山植物科学研究中心, 上海 201602
    2上海师范大学生命与环境科学学院, 上海 200234
    3国家林业局华东野生濒危资源植物保育中心, 上海 201602
    4湘西自治州森林资源监测中心, 吉首 416000
  • 收稿日期:2017-12-29 出版日期:2018-11-01 发布日期:2018-12-05
  • 通讯作者: 严岳鸿 E-mail:yan.yh@126.com
  • 作者简介:

    作者简介:白克智, 1959年开始在中国科学院植物研究所工作, 先后任助理研究员、研究员, 长期从事植物生长发育及其调控的研究。1986年,其主持的“满江红生物学特性研究”荣获中国科学院科技进步二等奖。曾任《植物生理学报》编委、《植物学报》常务编委、中国植物生长调节剂协会主任等职。

  • 基金资助:
    国家自然科学基金(No.31370234)、上海市绿化和市容管理局科技攻关项目(No.G162401)和科技部科技基础性工作专项(No. 2013FY112100)

Phylogeny and Systematics of the Genus Microlepia (Dennstaedtiaceae) based on Palynology and Molecular Evidence

Luo Junjie1,2, Wang Ying1,2, Shang Hui1,3, Zhou Xile4, Wei Hongjin1,3, Huang Sunan2, Gu Yufeng1,2, Jin Dongmei1,3, Dai Xiling2, Yan Yuehong1,3,*()   

  1. 1Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
    2College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
    3Eastern China Conservation Center for Wild Endangered Plant Resources, State Forestry Administration, Shanghai 201602, China
    4Xiangxi Autonomous Prefecture Forest Resources Monitoring Center, Jishou 416000, China
  • Received:2017-12-29 Online:2018-11-01 Published:2018-12-05
  • Contact: Yan Yuehong E-mail:yan.yh@126.com

摘要:

孢粉学是解决植物分类中疑难类群物种微形态分化的重要方法, 随着分子系统学的发展, 结合这两门学科的优势可以更加有效地解决疑难类群的分类学问题。鳞盖蕨属(Microlepia)是一个分类困难的疑难类群, 采用孢粉学与分子系统学一一对应的方法, 以及居群取样方式, 选取280份样本, 联合4个叶绿体片段(rbcLtrnL-FpsbA-trnHrps4), 采用最大似然法和贝叶斯法构建该属的系统发生关系, 在此基础上对凭证标本中100份材料的孢子进行观察和分析。综合分子系统学和孢粉学的研究结果, 得出结论: (1) 在形态学研究中广泛被接受的15个物种得到了单系支持, 并厘清了分类困难的复合群; (2) 发现边缘鳞盖蕨(M. marginata)可能存在隐性种; (3) 建议恢复过去归并处理为异名的瑶山鳞盖蕨(M. yaoshanica)、罗浮鳞盖蕨(M. lofoushanensis)、四川鳞盖蕨(M. szechuanica)以及滇西鳞盖蕨(M. subspeluncae); (4) 提出鳞盖蕨属可能存在杂交现象; (5) 提出鳞盖蕨属完整的属下分类建议。

关键词: 隐性种, 杂交, 孢粉学, 分子系统学, 蕨类植物, 分类

Abstract:

Palynology is an important method to solve the micro-morphological differentiation of species in some complex groups. With the development of molecular phylogeny, combining the advantages of these two subjects may effectively solve the taxonomic issues in plants. Microlepia (Dennstaedtiaceae) is one of the most difficult genera in ferns in terms of taxonomy. In the present study, based on palynology matched with phylogeny and population sampling, we constructed the phylogeny of 280 samples by using both Maximum Likelihood and Bayesian methods with four plastid markers (rbcL, trnL-F, psbA-trnH and rps4). The spore morphology of 100 samples was observed and analyzed. Our results of comprehensive molecular phylogeny and palynology showed that (1) 15 species widely accepted based on plant morphology were strongly supported, and this complex group of Microlepia has been further clarified; (2) There may be crytic species in the populations of M. marginata; (3) M. yaoshanica Ching, M. lofoushanensis Ching, M. szechuanica Ching and M. subspeluncae Ching, treated as synonyms in previous studies, should be restored as independent species; (4) Many hybridization events of Microlepia were found; and (5) A complete infrageneric taxonomy of Microlepia was proposed.

Key words: crytic species, hybrids, palynology, phylogeny and systematics, pteridophytes, taxonomy

图 1

基于4个叶绿体片段rbcL、trnL-F、psbA-trnH和rps4联合数据构建的鳞盖蕨属贝叶斯系统发育树分支旁边的数字表示贝叶斯后验概率与ML自展支持率(≥50%); * 表示1或100; - 表示<0.5或50%。"

图 2

孢子大小分布对应鳞盖蕨属的谱系分化"

[1] 曹建国, 于晶, 王全喜 (2007). 中国蕨类植物孢子的形态VII. 桫椤科. 云南植物研究 29, 7-12.
[2] 陈焕镛 (1964). 海南植物志, 第1卷. 北京: 科学出版社. pp. 46-52.
[3] 广西植物研究所 (2013). 广西植物志. 南宁: 广西科学技术出版社. pp. 96-108.
[4] 孔宪需 (1988). 四川植物志, 第6卷. 蕨类植物门. 成都: 四川科学技术出版社. pp. 183-190.
[5] 刘红梅, 张宪春, 曾辉 (2009). DNA序列在蕨类分子系统学研究中的应用. 植物学报 44, 143-158.
doi: 10.3969/j.issn.1674-3466.2009.02.002
[6] 牟善杰 (2010). 碗蕨科鳞盖蕨属专论研究. 博士论文. 台北: 台湾师范大学. pp. 1-198.
[7] 秦仁昌 (1959). 中国植物志, 第2卷. 北京: 科学出版社. pp. 207-246.
[8] 王培善, 王筱英 (2001). 贵州蕨类植物志. 贵阳: 贵州科技出版社. pp. 433-442.
[9] 王全喜, 陈立群, 包文美 (1997). 中国金毛裸蕨属植物孢子形态的研究. 西北植物学报 17(5), 44-47.
[10] 王全喜, 戴锡玲 (2010). 中国水龙骨目(真蕨目)植物孢子形态的研究. 北京: 科学出版社. pp. 1-25.
[11] 王全喜, 于晶 (2003). 扫描电镜下真蕨目孢子表面纹饰的分类. 云南植物研究 25, 313-320.
doi: 10.3969/j.issn.2095-0845.2003.03.006
[12] 吴德邻 (2006). 广东植物志, 第7卷. 广州: 广东科技出版社. pp. 81-85.
[13] 吴征镒 (2006). 云南植物志, 第12卷. 北京: 科学出版社. pp. 216-230.
[14] 杨鲁红 (2012). 中国石韦属植物系统分类学研究. 硕士论文. 昆明: 云南大学. pp. 1-142.
[15] 张宪春, 卫然, 刘红梅, 何丽娟, 王丽, 张钢民 (2013). 中国现代石松类和蕨类的系统发育与分类系统. 植物学报 48, 119-137.
doi: 10.3724/SP.J.1259.2013.00119
[16] 张玉龙, 席以珍, 张金谈, 高桂珍, 杜乃秋, 孙湘君, 孔昭宸 (1976). 中国蕨类植物孢子形态. 北京: 科学出版社. pp. 1-112.
[17] Akaike H (1974). A new look at the statistical model identification.IEEE Trans Automat Contr 19, 716-723.
doi: 10.1109/TAC.1974.1100705
[18] Burland TG (2000). Dnastar’s lasergene sequence analysis software. In: Misener S, Krawetz SA, eds. Bioinformatics Methods and Protocols. Methods in Molecular BiologyTM, Vol. 132. Totowa, NJ: Humana Press. pp. 71-91.
[19] Denk T, Grimm GW (2009). Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus(Fagaceae). Int J Plant Sci 170, 926-940.
doi: 10.1086/600134
[20] Ebihara A, Nitta JH, Ito M (2010). Molecular species identification with rich floristic sampling: DNA barcoding the pteridophyte flora of Japan.PLoS One 5, e15136.
doi: 10.1371/journal.pone.0015136 pmid: 2999545
[21] Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT.Nucl Acids Sym Ser 41, 95-98.
[22] Hasebe M, Omori T, Nakazawa M, Sano T, Kato M, Iwatsuki K (1994). rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc Natl Acad Sci USA 91, 5730-5734.
[23] Huang TC (1981). Spore Flora of Taiwan (Pteridophyta). Taiwan: National Taiwan University. pp. 52-53.
[24] Kramer KU (1990). Dennstaedtiaceae. In: Kramer KU, Green PS, eds. The Families and Genera of Vascular Plants, Vol. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag. pp. 81-94.
[25] Lehtonen S, Wahlberg N, Christenhusz MJM (2012). Diversification of lindsaeoid ferns and phylogenetic uncertainty of early polypod relationships.Bot J Linn Soc 170, 489-503.
doi: 10.1111/j.1095-8339.2012.01312.x
[26] Li FW, Kuo LY, Rothfels CJ, Ebihara A, Chiou WL, Windham MD, Pryer KM (2011). rbcL and matK earn two thumbs up as the core DNA barcode for ferns. PLoS One 6, e26597.
doi: 10.1371/journal.pone.0026597 pmid: 3197659
[27] Miller MA, Pfeiffer W, Schwartz T (2010). Creating the cipres science gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop (GCE). New Orleans: IEEE. pp. 1-8.
[28] Moran RC, Hanks JG, Rouhan G (2007). Spore morpho- logy in relation to phylogeny in the fern genus Elaphoglossum(Dryopteridaceae). Int J Plant Sci 168, 905-929.
[29] Nakato N, Ebihara A (2011). Chromosome number of Microlepia hookeriana (Dennstaedtiaceae) and chromosome number evolution in the genus Microlepia. Bull Natl Mus Nat Sci Ser B 37, 75-78.
[30] Posada D (2008). Jmodeltest: phylogenetic model averaging.Mol Biol Evol 25, 1253-1256.
doi: 10.1093/molbev/msn083
[31] Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004). Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences.Am J Bot 91, 1582-1598.
doi: 10.3732/ajb.91.10.1582 pmid: 21652310
[32] Pryer KM, Smith AR, Hunt JS, Dubuisson JY (2001). rbcL data reveal two monophyletic groups of filmy ferns(Filicopsida: Hymenophyllaceae). Am J Bot 88, 1118-1130.
doi: 10.2307/2657095 pmid: 11410477
[33] Rambaut A, Drummond AJ (2007). Tracer v1.4. .
[34] Ronquist F, Huelsenbeck JP (2003). Mrbayes 3: Bayesian phylogenetic inference under mixed models.Bioinforma- tics 19, 1572-1574.
doi: 10.1093/bioinformatics/btg180
[35] Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Syst Biol 61, 539-542.
doi: 10.1093/sysbio/sys029 pmid: 22357727
[36] Schuettpelz E, Korall P, Pryer KM (2006). Plastid atpA data provide improved support for deep relationships among ferns. Taxon 55, 897-906.
[37] Schuettpelz E, Pryer KM (2007). Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes.Taxon 56, 1037-1050.
doi: 10.2307/25065903
[38] Schwarz G (1978). Estimating the dimension of a model.Ann Statist 6, 461-464.
doi: 10.1214/aos/1176344136
[39] Shaw J, Lickey EB, Beck JT, Farmer SB, Liu WS, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005). The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis.Am J Bot 92, 142-166.
doi: 10.3732/ajb.92.1.142
[40] Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006). A classification for extant ferns.Taxon 55, 705-731.
doi: 10.2307/25065646
[41] Souza-Chies TT, Bittar G, Nadot S, Carter L, Besin E, Lejeune B (1997). Phylogenetic analysis of Iridaceae with parsimony and distance methods using the plastid gene rps4. Plant Syst Evol 204, 109-123.
[42] Swofford DL (2003). Paup*: Phylogenetic Analysis Using Parsimony, Version 4.0 b10.
[43] Taberlet P, Gielly L, Pautou G, Bouvet J (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA.Plant Mol Biol 17, 1105-1109.
doi: 10.1007/BF00037152
[44] Tagawa M (1952). Fern miscellany (6).J Jpn Bot 27, 213-218.
[45] Tate JA, Simpson BB (2003). Paraphyly of Tarasa(Malvaceae) and diverse origins of the polyploid species. Syst Bot 28, 723-737.
doi: 10.1043/02-64.1
[46] The Pteridophyte Phylogeny Group (2016). A community-derived classification for extant lycophytes and ferns.J Syst Evol 54, 563-603.
doi: 10.1111/jse.12229
[47] Tryon AF, Lugardon B (1991). Spores of the Pteridophyta. Berlin: Springer-Verlag. pp. 1-279.
[48] Wang FG, Liu HM, He CM, Yang DM, Xing FW (2015). Taxonomic and evolutionary implications of spore ornamentation in Davalliaceae.J Syst Evol 53, 72-81.
doi: 10.1111/jse.12115
[49] Wolf PG (1995). Phylogenetic analyses of rbcL and nuclear ribosomal RNA gene sequences in Dennstaedtiaceae. Am Fern J 85, 306-327.
doi: 10.2307/1547812
[50] Wolf PG (1997). Evaluation of atpB nucleotide sequences for phylogenetic studies of ferns and other pteridophytes. Am J Bot 84, 1429-1440.
doi: 10.2307/2446141 pmid: 21708550
[51] Xu Y, Hu CM, Hao G (2016). Pollen morphology of Androsace(Primulaceae) and its systematic implications. J Syst Evol 54, 48-64.
doi: 10.1111/jse.12149
[52] Yan YH, Qi XP, Zhang XC (2013). Dennstaedtiaceae. In: Wu ZY, Raven PH, Hong DY, eds. Flora of China, Vol. 2-3. Pteridophytes. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. pp. 147-168.
[53] Yanez A, Marquez GJ, Morbelli MA (2016). Palynological analysis of Dennstaedtiaceae taxa from the paranaense phytogeographic province that produce trilete spores II: Microlepia speluncae and Pteridium arachnoideum. An Acad Bras Ciênc 88, 877-890.
[54] Yuan Y, Fu L, Ma CY (2012). Microlepia boluoensis sp. nov.(Dennsteadtiaceae) from Guangdong, China. Nord J Bot 30, 168-173.
doi: 10.1111/j.1756-1051.2011.01318.x
[55] Zhou XM, Zhang LB (2015). A classification of Selaginella(Selaginellaceae) based on molecular (chloroplast and nuclear), macromorphological, and spore features. Taxon 64, 1117-1140.
doi: 10.12705/646.2
[1] 蒋凯文, 潘勃, 田斌. 近年来中国国产豆科的属级分类学变动[J]. 生物多样性, 2019, 27(6): 689-697.
[2] 王应祥. 染色体展片法观察拟南芥雄性减数分裂过程中的染色体形态[J]. 植物学报, 2019, 54(5): 0-0.
[3] 黄建峰, 徐睿, 彭艳琼. 榕树种间杂交研究进展[J]. 生物多样性, 2019, 27(4): 457-467.
[4] 程祝宽. 水稻减数分裂染色体分析方法[J]. 植物学报, 2019, 54(4): 0-0.
[5] 庄平. 杜鹃花属植物的可育性研究进展[J]. 生物多样性, 2019, 27(3): 327-338.
[6] 陈作艺, 许晓静, 朱素英, 翟梦怡, 李扬. 中国沿海洛氏角毛藻复合群的多样性组成及地理分布[J]. 生物多样性, 2019, 27(2): 149-158.
[7] 涂伟凤,张洋,汤洁,涂玉琴,辛佳佳,姬红利,张南峰,张弢. 印度蔊菜与无瓣蔊菜形态变异特征的比较及分类关系[J]. 生物多样性, 2019, 27(2): 168-176.
[8] 胡颖, 王茜, 张新新, 周玮, 陈晓阳, 胡新生. 叶绿体DNA标记在谱系地理学中的应用研究进展[J]. 生物多样性, 2019, 27(2): 219-234.
[9] 谢丹,王玉琴,张小霜,吴玉,杨敬元,张代贵. 神农架国家公园植物采集史及模式标本名录[J]. 生物多样性, 2019, 27(2): 211-218.
[10] 葛美玲, 徐勤增, 范士亮, 王宗兴, 张学雷. 中国近海多毛纲底栖类群目与科水平的分类[J]. 生物多样性, 2018, 26(9): 998-1003.
[11] 唐霜, 沈姝, 史君明, 方耀辉, 王华林, 胡志红, 邓菲. 布尼亚病毒目新分类概述[J]. 生物多样性, 2018, 26(9): 1004-1015.
[12] 高趁光, 乔鲜果, 王孜, 陆帅志, 侯东杰, 刘长成, 赵利清, 郭柯. 中国百里香草原的分布、群落特征和分类[J]. 植物生态学报, 2018, 42(9): 971-976.
[13] 王乐, 时晨, 田金炎, 宋晓楠, 贾明明, 李小娟, 刘晓萌, 钟若飞, 殷大萌, 杨杉杉, 郭先仙. 基于多源遥感的红树林监测[J]. 生物多样性, 2018, 26(8): 838-849.
[14] 蒋志刚. 论保护地分类与以国家公园为主体的中国保护地建设[J]. 生物多样性, 2018, 26(7): 775-779.
[15] 舒江平, 罗俊杰, 韦宏金, 严岳鸿. 基于模式产地的分子证据澄清南平鳞毛蕨的分类学地位[J]. 植物学报, 2018, 53(6): 793-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宋同清, 彭晚霞, 曾馥平, 王克林, 曹洪麟, 李先琨, 覃文更, 谭卫宁, 刘璐. 喀斯特峰丛洼地不同类型森林群落的组成与生物多样性特征[J]. 生物多样性, 2010, 18(4): 355 -364 .
[2] 郜怀峰,张亚飞,王国栋,孙希武,贺月,彭福田,肖元松. 钼在桃树干旱胁迫响应中的作用解析[J]. 植物学报, 2019, 54(2): 227 -236 .
[3] 薛瑞娟1, 陈高1, 黄圣卓2, 孙卫邦1. 仿栗油脂体化学组成及其与种子传播者关系的初步研究[J]. Plant Diversity, 2012, 34(5): 483 -486 .
[4] 胡慧建, 蒋志刚, 王祖望. 中国不同地理区域鸟兽物种丰富度的相关性[J]. 生物多样性, 2001, 09(2): 95 -101 .
[5] Wan Yu. [J]. Journal of Systematics and Evolution, 1985, 23(2): 151 -152 .
[6] 郑光植 王世林. 三七愈伤组织的培养[J]. Plant Diversity, 1989, 11(03): 1 -3 .
[7] Institute of Botany,Acad. Sinica. Preliminary Studies on Some Problems Regarding Sunflower[J]. Journal of Integrative Plant Biology, 1960, 9(2): .
[8] 刘应迪. 超微结构在藻类系统分类中的怍用[J]. 植物学报, 1990, 7(04): 18 -23 .
[9] 李嵘, 孙航. 植物系统发育区系地理学研究: 以云南植物区系为例[J]. 生物多样性, 2017, 25(2): 195 -203 .
[10] 卢毅军, 葛滢, 常杰, 关保华, 岳春雷. 杭州石荠苧不同地方种群分化及空间利用策略研究[J]. 生物多样性, 2001, 09(3): 254 -259 .