植物学报 ›› 2018, Vol. 53 ›› Issue (5): 643-652.DOI: 10.11983/CBB17173

• 研究报告 • 上一篇    下一篇

岩白菜属植物规模化繁殖及遗传稳定性

吕秀立1,2,3†, 张群1†, 陈香波1, 李圃锦1, 吴伟4, 关媛5,6,*   

  1. 1上海市园林科学规划研究院, 上海 200232
    2上海城市困难立地绿化工程技术研究中心, 上海 200232
    3国家林业种质资源平台上海子平台, 上海 200232
    4上海植物园, 上海 200232
    5上海市农业科学研究院林木果树研究所, 上海 201403
    6上海市农业科学研究院, 上海市设施园艺技术重点实验室, 上海 201403
  • 收稿日期:2017-09-10 接受日期:2018-03-13 出版日期:2018-09-01 发布日期:2018-11-29
  • 通讯作者: 关媛
  • 作者简介:

    † 共同第一作者。

  • 基金资助:
    上海市种业发展项目(沪农科种字(2015)第8号)

Mass Propagation and Genetic Stability of Bergenia Species

Lü Xiuli1,2,3†, Zhang Qun1†, Chen Xiangbo1, Li Pujin1, Wu Wei4, Guan Yuan5,6,*   

  1. 1Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
    2Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai 200232, China
    3National Forest Genetic Resources Platform-Shanghai Sub-platform, Shanghai 200232, China
    4Shanghai Botanical Garden, Shanghai 200232, China
    5Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
    6Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
  • Received:2017-09-10 Accepted:2018-03-13 Online:2018-09-01 Published:2018-11-29
  • Contact: Guan Yuan
  • About author:

    † These authors contributed equally to this paper

摘要:

根据市场需求和野生资源现存状况, 筛选厚叶岩白菜(Bergenia crassifolia)、秦岭岩白菜(B. scopulosa)和岩白菜(B. purpurascens)进行规模化繁殖, 并利用ISSR分子标记对组培苗进行遗传稳定性分析。以顶芽为外植体, 筛选出MS+0.5 mg·L-1 6-BA+0.01 mg·L-1 NAA+2.0 mg·L-1 VC为最佳增殖培养基, 3种岩白菜属植物增殖系数分别为3.10、2.50和2.10; 在1/2MS+1.0 mg·L-1 IBA+2.0 mg·L-1 VC培养基上, 3种岩白菜属植物生根率分别为85%、80%和75%; 在腐殖土:黄沙:珍珠岩=2:1:1 (v/v/v)的混合基质中, 移栽成活率分别为90%、85%和80%。规模化繁殖厚叶岩白菜20万株, 秦岭岩白菜2万株, 岩白菜1万株, 目前还在持续生产中。ISSR分子标记结果表明, 岩白菜后代遗传变异较大, 秦岭岩白菜后代遗传变异较小, 3个种在继代至第20代时出现了遗传变异; 岩白菜和秦岭岩白菜的平均遗传变异率随继代次数的增加而增加, 厚叶岩白菜的平均遗传变异率随继代次数的增加呈现不规律变化。

关键词: 厚叶岩白菜, 秦岭岩白菜, 岩白菜, 遗传稳定性, 规模化繁殖

Abstract:

According to commercial use, market demand and survival of wild resources, Bergenia crassifolia, B. scopulosa, B. purpurascens were selected for tissue culture in vitro and standardized propagation. ISSR markers were used to analyze the genetic stability of tissue culture plantlets. The optimal multiplication medium was MS medium supplemented with 0.01 mg·L-1 NAA, 0.5 mg·L-1 6-BA, and 2.0 mg·L-1 Vc with shoot tips used as explants. The multiplication coefficients were 3.10, 2.50 and 2.10 for the three species, respectively. The suitable rooting culture medium was 1/2MS medium with 1.0 mg·L-1 IBA and 2.0 mg·L-1 Vc, and the rooting rates for the three Bergenia species were 85%, 80%, and 75%, respectively. The rooted plants were transplanted in a mixed medium of humus, yellow sand, and perlite with volume ratio 2:1:1; the survival rates of transplanted plantlets were 90%, 85% and 80%, respectively. Using this method of rapid propagation, three Bergenia species propagated 200 000, 20 000, and 10 000 plantlets, respectively. ISSR molecular marker detection results showed that genetic variation was greater for regenerated plantlets of B. purpurascens than the mother plant and was lower for regenerated plantlets of B. scopulosa than the mother plant. After 20 generations of regeneration, the plantlets of the 3 Bergenia species showed genetic variation. The average genetic variation rate of B. scopulosa and B. purpurascens increased with increasing subculture times, but the average genetic variation rate of B. crassifolia after the increase in number of generations changed irregularly.

Key words: Bergenia crassifolia, B. scopulosa, B. purpurascens, genetic stability, mass propagation