植物学报 ›› 2017, Vol. 52 ›› Issue (1): 77-88.doi: 10.11983/CBB16192

所属专题: 水稻生物学专辑

• 研究报告 • 上一篇    下一篇

不同水稻种质在不同生育期耐盐鉴定的差异

吴家富, 杨博文, 向珣朝*(), 许亮, 颜李梅   

  1. 西南科技大学植物分子遗传育种实验室, 绵阳 621010
  • 收稿日期:2016-10-07 接受日期:2016-12-13 出版日期:2017-01-15 发布日期:2017-01-23
  • 通讯作者: 向珣朝 E-mail:xiangxunchao@swust.edu.cn
  • 作者简介:

    # 共同第一作者

  • 基金资助:
    西南科技大学重点科研平台专职科研创新团队建设基金(No.14tdgc07)、四川省教育厅重点项目(No.17ZA0272)和西南科技大学实验室开放基金(No.15xnkf5)

Identification of Salt Tolerance in Different Rice Germplasm at Different Growth Stages

Jiafu Wu, Bowen Yang, Xunchao Xiang*, Liang Xu, Limei Yan   

  1. Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang 621010, China
  • Received:2016-10-07 Accepted:2016-12-13 Online:2017-01-15 Published:2017-01-23
  • Contact: Xiang Xunchao E-mail:xiangxunchao@swust.edu.cn
  • About author:

    # Co-first authors

摘要:

以21份水稻(Oryza sativa)种质为材料, 用1.5%NaCl处理种子8天后测定发芽率。在苗期用不同浓度NaCl水培处理10天, 测定叶片死亡率等指标和高亲和性K+转运基因(HKT)家族变异。在成株期选3份种质, 用不同浓度NaCl盆栽处理, 在开花期和籽粒蜡熟期测定植株可溶性糖和生物量等指标, 以明确各种质不同生育期的耐盐差异和关键指标。结果表明, 在NaCl胁迫下, 种子发芽率受到显著影响。苗期盐胁迫后, 各种质的平均叶片死亡率变幅最大。在被鉴定的8个耐盐种质中, HKT家族的7个基因除OsHKT2;4外均存在。在≤1 g·kg-1盐胁迫下植株可溶性糖含量表现出刺激增长效应。CG15R单株生物量与盐浓度呈正相关, 且随盐浓度的增加而缓慢增长。在≤1 g·kg-1时, 中花9号的生物量随盐浓度的增加而增加。水稻耐盐性具有明显的阶段发育特异性, 且不同发育阶段的耐盐性之间无相关性。叶片死亡率与蜡熟期生物量可分别作为苗期和成株期耐盐鉴定的关键指标。CG15R可作为高耐盐种质进行深入分析和利用。

Abstract:

We used 21 rice (Oryza sativa) germplasm as experimental materials. Dry seeds were treated for 8 d in 1.5% NaCl solution and germination rate was measured. The seedlings with 2 green leaves were cultured by hydroponics in Petri dishes with different NaCl concentrations. After 10 days, relative shoot height, relative root length, leaf mortality, water content and the expression of 7 of 9 high-affinity K+ transporter (HKT) gene families were measured. In the adult period (30-d seedling to maturation), 3 representative germplasm were treated at different NaCl concentrations in a pot experiment. We investigated the effects of salt stress at flowering or dough stage of rice, for example, soluble sugar content. The results showed that germination rates of seed were affected significantly, with a wide range of variation, with 1.5% NaCl stress concentration. The variation in leaf mortality was the largest among the measured indicators at seedling stage. Besides OsHKT2;4, 6 members of HKT gene family were detected in the 8 germplasm genome. Soluble sugar content of germplasm showed a growth-stimulation effect with salt content stress ≤1 g∙kg-1. The biomass of CG15R was positively correlated with salt content and the biomass increased with the addition of salt. Biomass of Zhonghua9 increased with the addition of salt with salt content ≤1 g∙kg-1. Salt tolerance of rice shows the characteristic of stage development, and salt tolerance at different developmental stages is not correlated. The leaf mortality and biomass of dough stage could be the key indicators of salt tolerance for seedling and adult rice. CG15R represents a germplasm with high salt tolerance and should be further analyzed.

表1

供试材料及类型"

No. Germplasm Subspecies No. Germplasm Subspecies
1 C190 Indica 12 CG131R Indica
2 CG133R Indica 13 CG158R Indica
3 HD63 Indica 14 CG111R Indica
4 CG15R Indica 15 CG114R Indica
5 Javanica 22 Japonica 16 CG173R Indica
6 Shuhui527 Indica 17 CG132R Indica
7 3301R Indica 18 CG151R Indica
8 Lehui188 Indica 19 CG159R Indica
9 Zhonghua9 Japonica 20 CG240R Indica
10 Jing925 Japonica 21 BR207-2 Indica
11 BR207-1 Indica

表2

HKT家族基因引物信息"

Gene Sequence of primers (5'-3') Tm Length for genome amplified (bp) Chromosome
OsHKT1;1 F: GAGCACTGTGGAGGAATTTTACCG
R: TAGTGAGTAGCCTACATTGCCGAAA
61.1 389 Chr.04
OsHKT1;3 F: GCTTACTTTGCCCTGATCTCCT
R: TGAATACCTCACCACCAATC
58.0 214 Chr.02
OsHKT1;4 F: GCGACTCTGGCAAACTGATA
R: GGTTCCTGTCTATGTGAAAATGAATA
57.5 211 Chr.04
OsHKT2;1 F: GTTAATTTTGTTGTTCTAGC
R: ATGAGGCTGGAAAGTGTCAG
53.3 200 Chr.06
OsHKT2;3 F: CTGCCATGAGAAGGCGTACAA
R: ATCGCATACTGATCGCTTCTGAT
59.2 152 Chr.01
OsHKT2;4 F: CTTGCCATGAGAAGCCATACAG
R: CTTGATTCTTGCATAACATCATCA
57.6 146 Chr.06
OsHKT1;5 F: ACGACCCCATCAACTACAGCGTCC
R: TGCTCCACTTCCCTGAGAAGCCAAC
65.3 833 Chr.01

表3

不同水稻种质的发芽率及相对盐害率"

No. Average germination rate (%) Relative salt damage
rate (%)
Salt tolerance Level
CK NaCl (1.5%)
1 99.33±1.15 aA 36.67±0.01 cC 63.08 Weak 7
2 99.33±1.15 aA 7.78±1.92 ghFG 92.17 Very weak 9
3 83.33±0.01 gG 13.33±0.01 efgEFG 84.00 Very weak 9
4 60.20±0.34 lL 8.84±3.08 ghFG 85.97 Very weak 9
5 73.33±0.01 jJ 11.67±1.67 fghEFG 84.08 Very weak 9
6 99.33±1.15 aA 28.00±15.62 dCD 71.68 Weak 7
7 83.33±0.01 gG 14.00±6 efgEFG 83.20 Very weak 9
8 86.67±0.01 fF 13.34±8.80 efgEFG 84.60 Very weak 9
9 93.34±0.01 dD 15.00±5 efgEF 83.93 Very weak 9
10 90.00±0.02 eE 81.67±1.67 aA 9.26 Very strong 1
11 73.33±0.01 jJ 16.89±3.00 efDEF 71.96 Weak 7
12 93.34±0.02 dD 3.33±0.01 hG 96.43 Very weak 9
13 93.34±0.02 dD 26.67±3.34 dCD 71.43 Weak 7
14 80.00±0.02 hH 10.00±2 fghFG 87.50 Very weak 9
15 86.68±0.02 fF 21.67±1.67 deDE 75.00 Weak 7
16 66.68±0.02 kK 50.00±0.02 bB 25.02 Strong 3
17 98.02±0.02 bB 13.33±7.02 efgEFG 86.39 Very weak 9
18 96.67±0.01 cC 7.33±3.05 ghFG 92.41 Very weak 9
19 76.67±0.01 iI 8.89±5.09 fghFG 88.41 Very weak 9
20 99.33±1.15 aA 8.89±5.09 fghFG 91.09 Very weak 9
21 93.34±0.01 dD 16.89±3.06 efDEF 81.90 Very weak 9

表4

不同浓度盐处理下部分水稻种质的相对苗高与相对根长"

No. NaCl concentration Average
0.3% 0.5% 0.7% 0.9% 1.1%
Relative
seedling
height
Relative root
length
Relative seedling
height
Relative root
length
Relative seedling
height
Relative root
length
Relative seedling
height
Relative root length Relative seedling
height
Relative
root
length
Relative seedling
height
Relative root length
1 0.92 0.74 1.00 0.78 0.89 0.47 0.82 0.37 0.76 0.33 0.88 0.54
3 0.94 0.85 0.94 0.82 0.89 0.78 0.77 0.41 0.71 0.43 0.85 0.66
4 0.85 1.69 0.85 1.24 1.01 1.44 0.77 0.81 0.82 0.91 0.86 1.22
5 0.97 0.87 0.87 0.77 0.86 0.53 0.83 0.42 0.83 0.38 0.87 0.59
6 0.95 1.30 0.96 1.22 0.95 0.97 0.96 1.25 0.86 0.67 0.94 1.08
7 1.00 1.14 1.00 0.82 0.98 0.72 0.92 0.62 0.91 0.65 0.96 0.79
8 1.02 1.18 1.01 1.02 1.01 0.76 0.99 0.53 0.96 0.59 1.00 0.82
9 1.07 1.61 1.00 0.92 1.03 1.51 0.91 0.75 0.93 0.84 0.99 1.13
10 0.93 0.91 0.88 1.03 0.90 1.00 0.85 1.02 0.86 0.90 0.89 0.97
11 1.06 1.05 1.15 1.02 0.96 1.05 0.88 0.97 0.89 0.93 0.99 1.00
12 1.01 1.02 0.79 1.05 0.83 1.04 0.89 0.97 0.87 0.99 0.88 1.01
14 0.96 1.09 0.91 0.93 0.98 0.83 0.93 0.67 0.98 0.79 0.95 0.86
16 0.86 0.98 0.89 1.06 0.90 0.98 0.90 0.97 0.86 0.81 0.88 0.96
17 0.88 0.94 0.98 0.73 0.98 0.82 0.94 0.67 0.99 0.63 0.95 0.76
19 0.89 1.35 0.92 1.06 0.84 0.97 0.87 0.48 0.92 0.66 0.89 0.90
20 0.87 1.19 0.86 1.84 1.02 1.56 0.99 1.20 0.95 1.28 0.94 1.41
21 0.98 1.07 0.98 1.03 0.99 0.89 0.84 0.93 0.84 0.99 0.93 0.98

图1

11号水稻种质在不同浓度盐处理下的生长形态变化"

表5

不同浓度盐处理下部分水稻种质的叶片死亡率和含水量"

No. NaCl concentration Average
0 0.3% 0.5% 0.7% 0.9% 1.1%
Water content (%) Leaf
mortality (%)
Water content (%) Leaf
mortality (%)
Water content (%) Leaf
mortality (%)
Water content (%) Leaf
mortality (%)
Water content (%) Leaf
mortality (%)
Water content (%) Leaf
mortality (%)
Water content (%) Leaf
mortal-
ity (%)
1 71.60 13.37 69.37 39.50 71.93 24.06 68.13 53.68 63.25 56.66 66.72 89.04 67.88 eE 52.59 qQ
3 72.54 37.44 68.31 57.27 67.33 65.58 64.50 89.79 65.15 90.05 61.47 94.35 65.35 hH 79.41 gG
4 65.21 43.64 60.9 86.26 62.25 97.12 63.94 93.69 54.00 100.00 58.90 100.00 60.02 kK 95.41 aA
5 58.99 32.17 58.32 49.48 44.24 61.40 45.09 81.67 49.40 99.20 41.81 100.00 47.77 pP 78.35 hH
6 65.96 28.14 55.80 64.53 54.95 59.88 55.27 78.24 53.96 91.49 64.07 93.80 56.81 lL 77.59 iI
7 51.76 34.30 59.98 56.32 50.71 84.40 48.66 86.47 51.56 100.00 63.01 100.00 54.78 oO 85.44 dD
8 61.72 15.12 51.85 42.46 53.95 87.83 42.69 84.49 41.18 100.00 42.93 100.00 46.52 qQ 82.96 fF
9 74.42 29.95 75.18 26.63 70.04 71.48 69.25 84.12 73.10 97.96 67.05 100.00 70.92 cC 76.04 kK
10 75.25 33.66 72.65 53.65 73.23 84.40 73.17 81.00 73.96 97.07 72.16 100.00 73.03 bB 83.22 eE
11 67.27 19.64 65.62 42.87 68.42 44.97 68.54 47.71 65.62 91.48 68.66 100.00 67.37 fF 61.41 oO
12 69.14 13.52 70.96 44.81 68.32 30.92 65.46 70.89 65.19 93.70 63.54 99.49 66.70 gG 67.96 mM
14 71.15 20.27 68.51 55.58 70.12 60.57 70.75 81.07 70.76 88.92 70.22 99.60 70.07 dD 77.15 jJ
16 61.67 14.11 64.32 50.08 63.70 87.71 65.50 95.07 63.77 100.00 61.30 100.00 63.72 iI 86.57 cC
17 52.96 4.87 55.11 75.41 58.78 90.19 56.18 100.00 53.77 100.00 56.23 100.00 56.02 mM 93.12 bB
19 76.00 40.14 75.79 54.37 75.74 73.99 75.14 74.93 71.70 81.24 70.60 84.52 73.79 aA 73.81 lL
20 60.01 33.42 55.99 79.19 50.96 53.49 59.31 83.03 59.75 50.41 52.32 71.36 55.67 nN 67.50 nN
21 58.84 18.89 64.62 14.35 67.90 47.86 64.07 42.02 61.10 92.95 58.82 100.00 63.30 jJ 59.44 pP

图2

不同水稻种质OsHKT1;1基因的PCR检测结果^M: 分子量标准; 1: C190; 4: CG15R; 8: Lehui188; 10: Jing- 925; 11: BR207-1; 16: CG173R; 19: CG159R; 20: CG240R"

表6

不同水稻种质的PCR条带统计"

Primers 1-C190 4-CG15R 8-Lehui188 10-Jing925 11-BR207-1 16-CG173R 19-CG159R 20-CG240R
OsHKT1;1 1 1 1 1 1 1 1 1
OsHKT1;3 1 1 1 1 1 1 1 1
OsHKT1;4 1 1 1 1 1 1 1 1
OsHKT1;5 2 2 2 2 2 2 2 2
OsHKT2;1 1 1 1 1 1 1 1 1
OsHKT2;3 1 1 1 1 1 1 1 1
OsHKT2;4 0 0 0 0 0 0 0 0

图3

盐胁迫下水稻开花期和蜡熟期可溶性糖含量的比较^F: 开花期; D: 蜡熟期"

图4

盐胁迫对水稻成株期不同生理指标的影响^(A) 脯氨酸含量; (B) 丙二醛含量; (C) 过氧化氢酶活性; (D) 蜡熟期干物质量"

[1] 陈志德, 仲维功, 杨杰, 黄转运 (2004). 水稻新种质资源的耐盐性鉴定评价. 植物遗传资源学报 5, 351-355.
[2] 方先文, 汤陵华, 王艳平 (2004). 耐盐水稻种质资源的筛选. 植物遗传资源学报 5, 295-298.
[3] 顾兴友, 郑少玲, 严小龙, 杨崇, 卢永根 (1998). 盐浓度对水稻苗期耐盐指标变异度的影响. 华南农业大学学报 19, 30-34.
[4] 管志勇, 陈发棣, 滕年军, 陈素梅, 刘浦生 (2010). 5种菊花近缘种属植物的耐盐性比较. 中国农业科学 43, 787-794.
[5] 郭望模, 傅亚萍, 孙宗修, 郑镇一 (2003). 盐胁迫下不同水稻种质形态指标与耐盐性的相关分析. 植物遗传资源学报 4, 245-251.
[6] 胡时开, 陶红剑, 钱前, 郭龙彪 (2010). 水稻耐盐性的遗传和分子育种的研究进展. 分子植物育种 8, 629-640.
[7] 李小兵, 黎华寿, 张泽民, 陈桂葵 (2014). 水稻盐分胁迫研究进展. 广东农业科学 41, 6-11.
[8] 陆嘉惠, 吕新, 梁永超, 林海荣 (2013). 新疆胀果甘草幼苗耐盐性及对NaCl胁迫的离子响应. 植物生态学报 37, 839-850.
[9] 潘晓飚, 段敏, 谢留杰, 陈剑, 黄善军, 徐建龙 (2014). 盐胁迫下杂交水稻种子发芽特性及耐盐性评价. 中国农学通报 30, 75-79.
[10] 潘晓飚, 黄善军, 陈凯, 孟丽君, 徐建龙 (2012). 大田全生育期盐水灌溉胁迫筛选水稻耐盐恢复系. 中国水稻科学 26, 49-54.
[11] 祁栋灵, 韩龙植, 张三元 (2005). 水稻耐盐/碱性鉴定评价方法. 植物遗传资源学报 6, 226-230.
[12] 孙健, 赵宏伟, 王敬国, 刘化龙, 谢冬微, 刘忠良, 郭丽颖, 邹德堂 (2012). 水稻孕穗期剑叶形态和蒸腾特性与耐盐性的关系. 华北农学报 (6), 84-91.
[13] 王学奎 (2006). 植物生理生化试验原理和技术. 北京: 高等教育出版社. pp. 134-206.
[14] 吴延寿 (2008). 水稻钠离子转运蛋白OsHKT2;4的功能分析. 博士论文. 南京: 南京农业大学. pp. 61-85.
[15] 向珣朝, 李季航, 何立斌, 李平 (2007). ZmC4Ppc基因水稻的标记辅助选择及其后代的产量性状分析. 中国水稻科学 21, 25-30.
[16] 肖文斐, 马华升, 陈文岳, 裘劼人, 童建新, 郑桂珍, 忻雅, 王淑珍, 方献平, 阮松林 (2013). 籼稻耐盐性与稻米品质性状的关联分析. 核农学报 27, 1938-1947.
[17] 藏金萍, 孙勇, 王韵, 杨静, 李芳, 周永力, 朱苓华, Reys Jessica, Fotokian Mohammadhosein, 徐建龙, 黎志康 (2008). 利用回交导入系剖析水稻苗期和分蘖期耐盐性的遗传重叠. 中国科学(C辑) 38, 841-850.
[18] Andrew D (2012). The short- and medium- term impacts of rises in staple food prices.Food Secur 4, 633-645.
[19] Berthomieu P, Conéjéro G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Véry AA, Sentenac H, Casse F (2003). Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is cddrucial for salt tolerance.EMBO J 22, 2004-2014.
[20] Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007). HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143, 1918-1928.
[21] Foolad MR, Lin GY (1997). Absence of a relationship bet- ween salt tolerance during germination and vegetative growth in tomato.Plant Breed 116, 363-367.
[22] Horie T, Hauser F, Schroeder JI (2009). HKT transporter- mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants.Trends Plant Sci 14, 660-668.
[23] Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil JL, Conéjéro G, Rodríguez-Navarro A, Sentenac H, Guid- erdoni E, Abdelly C, Véry AA (2009). Diversity in expression patterns and functional properties in the rice HKT transporter family.Plant Physiol 150, 1955-1971.
[24] Johnson DW, Smith SE, Dobrenz AK (1992). Genetic and phenotypic relationships in response to NaCl at different developmental stages in alfalfa.Theor Appl Genet 83, 833-838.
[25] Karsten U, Franklin LA, Luning K, Wiencke C (1998). Natural ultraviolet radiation and photosynthetically active radiation induce formation of mycosporine- line amino aci- ds in the marine macroalga Chondrus crispus (Phodophyta).Planta 205, 257-262.
[26] Li XJ, Yang MF, Zhu Y, Liang Y, Shen SH (2011). Proteomic analysis of salt stress responses in rice shoot.J Plant Biol 54, 384-395.
[27] Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004). QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance.Theor Appl Genet 108, 253-260.
[28] Mäser P, Hosoo Y, Goshima S, Horie T, Eckelman B, Yamada K, Yoshida K, Bakker EP, Shinmyo A, Oiki S, Schroeder JI, Uozumi N (2002). Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants.Proc Natl Acad Sci USA 99, 6428-6433.
[29] Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012). Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene.Nature Biotechnol 30, 360-364.
[30] Plett D, Safwat G, Gilliham M, Skrumsager Møller I, Roy S, Shirley N, Jacobs A, Johnson A, Tester M (2010). Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1.PLoS One 5, e12571.
[31] Ren Z, Gao J, Li L, Cai X, Huang W, Chao D, Zhu M, Wang Z, Luan S, Lin H (2005). A rice quantitative trait locus for salt tolerance encodes a sodium transporter.Nat Genet 37, 1141-1146.
[32] Shereen A, Mumtaz S, Raza S, Khan MA, Solangi S (2014). Salinity effects on seedling growth and yield components of different inbred rice lines.Pakistan J Bot 37, 131-139.
[33] Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005). Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells.Plant J 44, 928-938.
[34] Vinocur B, Ahman A (2005). Recent advances in engineering plant tolerance to a biotic stress: achievements and limitations.Curr Opin Biotechnol 16, 123-132.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚壁君. 英文版《中国植物学杂志》即将问世[J]. 植物学报, 1988, 5(02): 121 .
[2] 朱至清 孙敬三. 从簇毛麦和摄威大麦草幼穗愈伤组织诱导植株再生[J]. 植物学报, 1984, 2(23): 69 -70 .
[3] 赵云云 雷和田 王景林. 硬粒小麦与珍珠栗远缘杂交的受精作用和胚胎发育[J]. 植物学报, 1997, 14(01): 41 -43 .
[4] 吴倩, 邵帅, 李珊珊, 张会金, 王亮生. 荷花花粉的类黄酮组成[J]. 植物学报, 2015, 50(6): 721 -732 .
[5] 孙春丽;潘延云. 拟南芥花粉活力的测定及其在花粉发育研究中的应用[J]. 植物学报, 2008, 25(03): 268 -275 .
[6] 童哲编译. 赤霉素的生物化学和分子生物学国际研讨会[J]. 植物学报, 2000, 17(06): 572 .
[7] 康国章 王正询 孙谷畴. 植物的冷调节蛋白[J]. 植物学报, 2002, 19(02): 239 -246 .
[8] 冀春茹 丁岗 冯卫生 刘延泽. 长白瑞香的化学成分[J]. 植物学报, 1994, 11(03): 48 -49 .
[9] 王立林. 水稻茎尖再生苗的光周期反应(简报)[J]. 植物学报, 1991, 8(02): 51 -52 .
[10] 赵可夫 范海. 世界上可以用海水灌溉的盐生植物资源[J]. 植物学报, 2000, 17(03): 282 -288 .