植物学报 ›› 2017, Vol. 52 ›› Issue (1): 30-42.doi: 10.11983/CBB16107

所属专题: 水稻生物学专辑

• 研究论文 • 上一篇    下一篇

水稻主栽品种空育131抗稻瘟病位点的扫描及其基因组重构建

张晓慧, 冯晓敏, 林少扬*   

  1. 中国科学院遗传与发育生物学研究所, 北京 100101
  • 收稿日期:2016-05-11 接受日期:2016-06-15 出版日期:2017-01-01 发布日期:2017-01-23
  • 通讯作者: 林少扬
  • 作者简介:

    # 共同第一作者

  • 基金资助:
    中国科学院分子模块设计育种创新体系先导专项(No.XDA08030102)

Scanning for Pi Loci and Rebuilding an Improved Genome of Elite Rice Variety Kongyu 131

Xiaohui Zhang, Xiaomin Feng, Shaoyang Lin*   

  1. Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101
  • Received:2016-05-11 Accepted:2016-06-15 Online:2017-01-01 Published:2017-01-23
  • Contact: Lin Shaoyang
  • About author:

    # Co-first authors

摘要:

空育131粳稻(Oryza sativa ssp. japonica)品种因具有早熟质优、丰产稳产及耐低温冷害等优点成为黑龙江省的第一大主栽品种。为了挽救其近年来由于感染稻瘟病而从生产上退出的局面, 通过对主栽品种空育131基因组的重测序和扫描, 明确其遗缺多个优良抗稻瘟病Pi基因(Pi2Pi9Pi36Pi5-1Pb1Pid3Pi25PikhPi1Pik-mPik-pPi56t等), 并通过回交育种的方法, 将MP水稻材料中的Pb1广谱抗瘟基因片段导入空育131染色体组中。该基因组的再构建过程尽可能不改变原品种的其它优良性状, 并利用控制目标导入片段长短的策略来缩短Pb1位点附近的连锁累赘。在目前得到的导入系中, 目标导入片段长约700 kb, 背景回复率为99.38%。表型鉴定结果显示, 该导入系可能和亲本MP水稻材料发挥同等的抗瘟能力。

Abstract:

The rice variety Kongyu 131 (Oryza sativa ssp. japonica) is the most widely grown elite cultivar in Heilongjiang province because of its high quality, early maturity, high yield and cold resistance. However, because it has been cultivated in the same areas for many years, it is now highly susceptible to rice blast. By re-sequencing and scanning the whole genome of Kongyu 131, we found that it lacks more than 12 cloned blast resistance genes, including Pi2, Pi9, Pi36, Pi5-1, Pb1, Pid3, Pi25, Pikh, Pi1, Pik-m, Pik-p and Pi56t. To improve the blast resistance, we successfully introgressed Pb1 (Panicle blast 1) into Kongyu131. Without changing the other agronomic characters, we used 5 single nucleotide polymorphism markers to control the length of the introduced target fragment derived from the donor cultivar MP. Inoculating test results indicated that the improved line, containing a 700 kb target fragment and sharing 99.38% genetic background with Kongyu 131, showed the same blast resistance as MP.

表1

水稻品种空育131稻瘟病感病性鉴定结果(按国际水稻所稻瘟病抗性评价分级标准)"

Year Artifical inoculation Natural infection
Seedling blast Leaf blast Panicle blast Seedling blast Leaf blast Panicle blast
1995 8 8 9 6 5 9
1996 9 9 9 9 9 9
1998 unknown 9 9 unknown 9 9
1999 unknown 8 9 unknown 8 9
2002 unknown 9 9 unknown 8 9
2003 unknown 8 9 unknown 7 9
2004 unknown 7 9 unknown 7 7
2005 9 9 9 9 9 9

表2

分子标记SNP1-SNP5"

Markers Chr. Position (IRGSP1.0) Forward primer (5′-3′) Reverse primer (5′-3′)
SNP1 11 24107429 CTTACAACCGAATTGCTTATCAC TATAGGATAAGAGTCGAAAGCATC
SNP2 11 24552815 CCTCAACAGGATCCAGATTCAATAC CAAGATCAATTGAGTTAGACAAC
SNP3 11 24717067 CCAGACATAATGCTTAAAGTAG CATAGTCGCAGTTCATCTTATG
SNP4 11 24747927 GACATATTGTATGCAATCTACTCG TTCACAGAAGCTAGTATAAGAG
SNP5 11 25104609 AAGTAATATACGCTACTATCTTG CGACGTGATGGGTAAGAACAG

表3

Pi基因在水稻品种空育131上的扫描比对结果"

Pi gene Chr. GenBank ID BLAST results (with CDS) Be contained or lacked in Kongyu 131
Pib 2 AB013448.1 High sequence homology Uncertain
Pita/Pi4a 12 AF207842.1 3 SNP sites Uncertain
Pi2/Piz5 6 DQ352453.1 53 SNP sites Lacked
Pi9 6 DQ285630 Sequence deletion Lacked
Pizt 6 DQ352040 High sequence homology Uncertain
Pi36 8 DQ900896.1 Multi-SNP sites Lacked
Pi37 1 DQ923494.1 4 SNP sites Uncertain
Pi5-1/Pi3/Pii 9 EU869185.1 29 SNP sites Lacked
Pit 1 AB379815.1 6 SNP sites Uncertain
Pish 1 Os01g0782100 No difference Contained
Pb1 11 AB570371.1 Structural variation Lacked
Pia 11 AB604622 and AB604627 High sequence homology Uncertain
pi-21 4 AB430853.1 1 SNP site Uncertain
Pi-d2 6 FJ915121.1 6 SNP sites Uncertain
Pi-d3 6 FJ773285 Terminator codon mutation Lacked
Pi25 6 HM448480 18 SNP sites Lacked
Pik 11 HM048900.1 2 SNP sites Uncertain
Pikh/Pi-54 11 AY914077(Pikh)/HE589445
(Pi54)
Structural variation Lacked
Pi1 11 HQ606329cds 11 SNP sites Lacked
Pik-m 11 AB510262.1 Structural variation Lacked
Pik-p 11 HM035360 Multi-SNP sites Lacked
Pi56t 9 None Multi-SNP sites Lacked

图1

水稻Pi25 CDS (coding sequence)和空育131 (BKY)的等位序列比对结果"

图2

水稻Pik1基因第3外显子和空育131 (BKY)的等位序列比对结果"

图3

水稻选拔个体的染色体组基因型^(A) BC3F1-02个体染色体组成; (B) BC3F2-0050个体染色体组成。 表示来源于空育131的染色体片段; 表示来源于MP的染色体片段; 表示片段来源未鉴定。"

图4

水稻选拔个体的染色体组基因型^(A) BC3F3-0032个体染色体组成; (B) BC3F4-22个体染色体组成。 表示来源于空育131的染色体片段; 表示来源于MP的染色体片段; 表示片段来源未鉴定。"

图5

水稻导入系接菌实验结果^(A) 水稻幼苗期(5叶)接菌实验结果及其相对病斑面积; (B) 水稻成株期(11叶) ±Pb1近等基因系接菌实验结果及其相对病斑面积。"

[1] 董志峰, 马荣才, 彭于发, 管华诗 (2001). 转基因植物中外源非目的基因片段的生物安全研究进展. 植物学报 43, 661-672.
[2] 姜玉英, 曾娟, 陆明红, 刘杰 (2013). 2013年全国主要粮食作物重大病虫害发生趋势预报. 植物保护 39, 1-4.
[3] 姜玉英, 曾娟, 陆明红, 刘杰 (2014). 2014年全国主要粮食作物重大病虫害发生趋势预报. 植物保护 40, 1-4.
[4] 姜玉英, 曾娟, 陆明红, 刘杰 (2015). 2015年全国三大谷类作物重大病虫害发生趋势预报. 植物保护 41, 1-4.
[5] 宋成艳, 王桂玲, 辛爱华, 丛万彪 (2007). 黑龙江省水稻品种空育131稻瘟病菌生理小种种类及发病原因分析. 黑龙江农业科学 (1), 41-42.
[6] 孙向东 (2005). 黑龙江省粮食主产区主要作物品种种植情况分析. 黑龙江农业科学 (2), 12-14.
[7] Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, Mc- Adams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000). A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta.Plant Cell 12, 2033-2045.
[8] Chen J, Shi Y, Liu W, Chai R, Fu Y, Zhuang J, Wu J (2011). A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae.J Genetics Genomics 38, 209-216.
[9] Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L (2006). A B-lectin receptor kinase gene conferring rice blast resistance.Plant J 46, 794-804.
[10] Fukuoka S, Okuno K (2001). QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice.Theor Appl Genet 103, 185-190.
[11] Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H (2010). Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS- LRR protein and was generated by acquiring a promoter through local genome duplication.Plant J 64, 498-510.
[12] Hua L, Wu J, Chen C, Wu W, He X, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q (2012). The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast.Theor Appl Genet 125, 1047-1055.
[13] Inoue H, Hayashi N, Matsushita A, Liu X, Nakayama A, Sugano S, Jiang CJ, Takatsuji H (2013). Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY- 45 through protein-protein interaction.Proc Natl Acad Sci USA 110, 9577-9582.
[14] Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q (2007). The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1.Genetics 177, 1871-1880.
[15] Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R (2011). A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes.Plant J 66, 467-479.
[16] Peleman JD, van der Voort JR (2003). Breeding by design.Trends Plant Sci 8, 330-334.
[17] Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL (2006). The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172, 1901-1914.
[18] Shang J, Tao Y, Chen X, Zou Y, Lei C, Wang J, Li X, Zhao X, Zhang M, Lu Z, Xu J, Cheng Z, Wan J, Zhu L (2009). Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes.Genetics 182, 1303-1311.
[19] Takahashi A, Hayashi N, Miyao A, Hirochika H (2010). Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol 10,175.
[20] Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, Numa H, Sakai H, Wu J, Itoh T, Sasaki T, Aono R, Fujii Y, Habara T, Harada E, Kanno M, Kawahara Y, Kawashima H, Kubooka H, Matsuya A, Nakaoka H, Saichi N, Sanbonmatsu R, Sato Y, Shinso Y, Suzuki M, Takeda J, Tanino M, Todokoro F, Yamaguchi K, Yamamoto N, Yamasaki C, Imanishi T, Okido T, Tada M, Ikeo K, Tateno Y, Gojobori T, Lin YC, Wei FJ, Hsing Y, Zhao Q, Han B, Kramer MR, McCombie RW, Lonsdale D, O'Donovan CC, Whitfield EJ, Apweiler R, Koyanagi KO, Khurana JP, Raghuvanshi S, Singh NK, Tyagi AK, Haberer G, Fujisawa M, Hosokawa S, Ito Y, Ikawa H, Shibata M, Yamamoto M, Bruskiewich RM, Hoen DR, Bureau TE, Namiki N, Ohyanagi H, Sakai Y, Nobushima S, Sakata K, Barrero RA, Sato Y, Souvorov A, Smith-White B, Tatusova T, An S, An G, OOta S, Fuks G, Messing J, Christie KR, Lieberherr D, Kim H, Zuccolo A, Wing RA, Nobuta K, Green PJ, Lu C, Meyers BC, Chaparro C, Piegu B, Panaud O, Echeverria M (2008). The rice annotation project database (RAP-DB): 2008 update.Nucleic Acids Res 36, 1028-1033.
[21] von Bubnoff A (2008). Next-generation sequencing: the race is on.Cell 132, 721-723.
[22] Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999). The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes.Plant J 19, 55-64.
[23] Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q (2011). The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication.New Phytol 189, 321-334.
[24] Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang GL (2006). The eight amino-acid differences within three Leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea.Mol Plant-Microbe Interact 19, 1216-1228.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张谧 谢宗强. 21世纪的生态学研究前沿[J]. 植物学报, 2002, 19(01): 121 -124 .
[2] 张士功 高吉寅 宋景芝. 甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响[J]. 植物学报, 1999, 16(04): 429 -432 .
[3] 何维明 钟章成. 土壤肥力对绞股蓝种群行为的影响[J]. 植物学报, 1999, 16(04): 425 -428 .
[4] 佘朝文 宋运淳 刘立华. 节节麦细胞不同分裂时期和阶段的G-带核型及其变动性分析[J]. 植物学报, 2001, 18(06): 727 -734 .
[5] 杨贵军, 黄文江, 王纪华, 邢著荣. 多源多角度遥感数据反演森林叶面积指数方法[J]. 植物学报, 2010, 45(05): 566 -578 .
[6] 陈曼, 涂艺声, 叶丽婻, 杨碧芸. 氨基酸对蛇足石杉叶状体增殖及石杉碱甲积累的影响[J]. 植物学报, 2017, 52(2): 218 -224 .
[7] 商业绯, 李明, 丁博, 牛浩, 杨振宁, 陈小强, 曹高燚, 谢晓东. 生长素调控植物气孔发育的研究进展[J]. 植物学报, 2017, 52(2): 235 -240 .
[8] 崔骁勇, 杜占池, 王艳芬. 内蒙古半干旱草原区沙地植物群落光合特征的动态研究[J]. 植物生态学报, 2000, 24(5): 541 -546 .
[9] 李维, 张亚黎, 胡渊渊, 杨美森, 吴洁, 张旺锋. 田间条件下棉花幼叶光合特性及光保护机制[J]. 植物生态学报, 2012, 36(7): 662 -670 .
[10] 胡宝忠, 刘娣, 胡国富, 张阿英, 姜述君. 中国紫花苜蓿地方品种随机扩增多态DNA的研究[J]. 植物生态学报, 2000, 24(6): 697 -701 .