Please wait a minute...
IMAGE/TABLE DETAILS
Composition of Flavonoids in Lotus Pollen
Qian Wu, Shuai Shao, Shanshan Li, Huijin Zhang, Liangsheng Wang
Chinese Bulletin of Botany    2015, 50 (6): 721-732.   DOI: 10.11983/CBB14194
Abstract   (1166 HTML7 PDF(pc) (569KB)(1086)  

We used ultra-performance liquid chromatography-mass spectrometry (I-Class UPLC/Xevo TQ MS) to separate and identify the flavonoids in lotus pollens from 50 cultivars. Lotus pollen contains 13 flavonols and 2 flavones, all reported in lotus pollen for the first time. The most abundant flavonoids were quercetin glucosides, namely quercetin 3-O-glucuronide, quercetin 3-O-rhamnopyranosyl-(1→2)-glucopyranoside and quercetin 3-O-arabinopyranosyl-(1→2)- galactopyranoside, detected in all cultivar pollen. The total flavonoid (TF) content ranged from 82.64 to 281.08 mg∙100 g-1 in 50 cultivars, with Fei-Yun-Qian-Ye showing the highest TF and Xian-Nv-San-Hua the lowest. According to cluster analysis, 50 lotus cultivars were classified into four groups; group B contained more flavonoids than other groups, and group B TF content was the highest. TF content in Fei-Yun-Qian-Ye, Bo-Li-Xiao-Jie and Shu-Hong-Lian exceeded 200 mg∙100 g-1 dry weight and could be developed into lotus pollen products.


Peak No. Rt
(min)
UV λmax (nm) ESI-NI (m/z) ESI-PI (m/z) Identification References
1 2.04 248, 354 493[M-H]-, 317[A-H]- 495[M+H]+, 319[A+H]+ Myricetin 3-O-glucuronide Chen et al., 2012a
2 2.18 248, 352 479[M-H]--, 316[A-2H]- 481[M+H]+, 319[A+H]+ Myricetin 3-O-glucoside Deng et al., 2013
3 2.23 248, 348 595[M-H]-, 300[A-2H]- 597[M+H]+, 303[A+H]+ Quercetin 3-O-arabino- pyranosyl-(1→2)-galacto- pyranoside Chen et al., 2012a
4 2.37 248, 348 298[A-2H]- 301[A+H]+ Diosmetin derivative
5 2.44 248, 348 477[M-H]-, 314[A-2H]- 479[M+H]+, 317[A+H]+ Isorhamnetin 3-O-glucoside Li et al., 2014
6 2.50 248, 348 607[M-H-CH3]-, 299[A-H]- 463[M+H-146]+, 301[A+H]+ Diosmetin 7-O-rhamnopy- ranosyl-(1→6)-glucopy- ranoside Li et al., 2014
7 2.63 248, 354 477[M-H]-, 301[A-H]- 479[M+H]+, 303[A+H]+ Quercetin 3-O-glucuronide Deng et al., 2009
8 2.74 248, 354 463[M-H]-, 300[A-2H]- 487[M+Na]+, 465[M+H]+, 303[A+H]+ Quercetin 3-O-galactoside Deng et al., 2009
9 2.80 248, 354 609[M-H]-, 301[A-H]- 611[M+H]+, 303[A+H]+ Quercetin 3-O-rhamnopy- ranosyl-(1→2)-glucopy- ranoside Li et al., 2014
10 3.13 248, 347 447[M-H]-, 284[A-2H]- 449[M+H]+, 287[A+H]+ Kaempferol 3-O-galactoside Jung et al., 2003
11 3.27 248, 348 461[M-H]-, 285[A-H]- 463[M+H]+, 287[A+H]+ Kaempferol 3-O-glucuronide Chen et al., 2012a
12 3.37 248, 348 447[M-H]-, 284[A-2H]- 471[M+Na]+, 287[A+H]+ Kaempferol 3-O-glucoside Yang et al., 2009
13 3.49 248, 353 623[M-H]-, 477[M-H-146]-, 315[A-H]- 625[M+H]+, 479[M+H-146]+, 317[A+H]+ Isorhamnetin 3-O-rhamnopy- ranosyl-(1→6)-glucopy- ranoside Chen et al., 2012a
14 3.63 248, 354 477[M-H]-, 314[A-2H]- 479[M+H]+, 317[A+H]+ Isorhamnetin 3-O-hexose Lim et al., 2006
15 3.71 248, 358 507[M-H]-, 344[A-2H]- 509[M+H]+, 347[A+H]+ Syringetin 3-O-glucoside Guo et al., 2009
Table 1 I-Class UPLC/Xevo TQ MS analysis as well as the structure characterization and tentative identification of flavonols and flavonoids in lotus pollen
Extracts from the Article
在I-Class UPLC/Xevo TQ MS负离子模式下, 分子离子可以进一步被打碎, 得到二级甚至三级碎片离子, 这些碎片离子对类黄酮结构的鉴定有很大作用。表1列出了荷花花粉黄酮和黄酮醇的特征数据, 包括保留时间、最大吸收波长和质谱数据。据此, 在50个品种的荷花花粉中鉴定出15种黄酮和黄酮醇物质, 包括13种黄酮醇和2种黄酮。其化学结构式如图2。
3号峰在(-)ESI-MS负离子模式下具有高丰度离子碎片m/z 595[M-H]-和苷元离子碎片m/z 300 [A-2H]-, 在(+)ESI-MS正离子模式下有离子碎片m/z 597[M+H]+和苷元离子碎片m/z 303[A+H]+。9号峰在(-)ESI-MS负离子模式下具有高丰度的离子m/z 609 [M-H]-和苷元离子m/z 301[A-H]-, 在(+)ESI-MS正离子模式下有离子m/z 611[M+H]+和苷元离子m/z 303 [A+H]+。这两个化合物被鉴定为槲皮素-O-双糖苷类化合物。Ablajian等(2006)的研究表明, 此类化合物糖链部分为1→6连接有利于产生[M-H]-苷元离子, 而1→2连接更有利于产生[M-2H]-离子。据此, 峰3可鉴定为Quercetin 3-O-arabinopyranosyl-(1→2)-galac- topyranoside, 该化合物曾在荷叶、叶脉、花瓣、雄蕊、雌蕊、花托、莲房、莲子、叶柄和花柄中报道过(Kashiwada et al., 2005; Chen et al., 2012a)。峰9被鉴定为Quercetin 3-O-rhamnopyranosyl-(1→2)- glucopyranoside, 此化合物在莲子心中存在(Li et al., 2014)。