Glycosyltransferase Genes Involved in Xyloglucan Biosynthesis
Minmin Xie, Jiangtao Chao, Yingzhen Kong
Chinese Bulletin of Botany
2015, 50 ( 5):
644-.
DOI: 10.11983/CBB14172
The hemicellulosic polysaccharide xyloglucan (XyG), found in the primary cell walls of most plants, plays important roles in structural organization of plant cell walls and regulation of growth and development. Recent research in structural characterization of XyGs from different plant species revealed the diversification of XyG during plant evolution. This paper reviews progress in studies of glycosyltransferase genes involved in XyG biosynthesis. Most of the XyG-specific glycosyltransferases have been identified, and some of them appear to form a complex for involvement in XyG biosynthesis. We discuss how changes in XyG structure affect plant growth and development.
Figure 1
Structures of the representative XyGs subunits and glycosyltransferases that involved in xyloglucan biosynthesis (A) The structure of the XLFG subunit, XXT1, XXT2 and XXT5 are xyloglucan xylosyltransferases that adding xylose residues; (B) The structure of the YXXG subunit, XUT1 is a xyloglucan-specific galacturonosyltransferase1; (C) The structure of the XXJG subunit; (D) The structure of the XSGG subunit. Fucp: Fucose; Xylp: Xylose; Galp: Galactose; Glcp: Glucose; GalpA: Galacturonic acid; OAC: Acetylation
Extracts from the Article
木葡聚糖的主链由β-1,4-D-葡聚糖链(Glc)组成, 有典型重复模式的木糖残基(Xyl)连接葡萄糖的O-6位置。这些侧链上的木糖又进一步被不同的单糖、双糖或三糖基所替代。拟南芥(Arabidopsis thaliana)中代表性的木葡聚糖亚基的结构如图1A所示(von Schantz et al., 2009)。图1中单个字母分别代表不同的侧链组成。例如, 字母G表示无侧链修饰的葡萄糖(Glc)残基, X表示α-D-Xylp-1,6-β- D-Glcp基团。Xyl基团可以继续连接β-D-半乳糖基(Gal), 形成β-D-Galp-1,2-α-D- Xylp-1,6-β-D-Glcp结构, 简称为L。L侧链上的Gal残基可以进一步连接α-L-岩藻糖基(Fuc), 形成α-L- Fucp-1,2-β-D-Galp-1,2-α-D-Xylp-1,6-β-D-Glcp,简称为F侧链。在拟南芥中, 主要存在的木葡聚糖结构是XLFG、XXXG和XXFG, 分别占43%、25%和24% (von Schantz et al., 2009), 还存在少量的XXLG、XLLG和XLXG。同时, 我们的研究结果表明, 在拟南芥根毛中存在一种木葡聚糖特异结构, 即侧链含酸性糖半乳糖醛酸(GalA)的YXXG结构(图1B), 这也更新了传统意义上认为的拟南芥木葡聚糖仅含中性糖侧链的观点(Peña et al., 2012)。植物细胞壁多糖常常会被O-乙酰化, 在拟南芥木葡聚糖中, 仅有侧链上的半乳糖会被乙酰化, 拟南芥叶木葡聚糖侧链含有高达60%的O型乙酰半乳糖(图1A) (Perrin et al., 2003)。而在茄科和禾本科中, 木葡聚糖主链上的部分葡萄糖基可以被O-乙酰化(Gibeaut et al., 2005; Jia et al., 2005)。
图1
不同植物中木葡聚糖的葡萄糖主链结构基本相同, 但是在侧链修饰上存在一定的差异, 大部分植物物种都存在XXXG型或XXGG型的木葡聚糖。在希蒙得木(Simmondsia chinensis)的木葡聚糖上, L侧链还可以继续连接α-L-半乳糖基(Gal), 形成α-L-Galp-1,2- β-D-Galp-1,2-α-D-Xylp-1,6-β-D-Glcp结构, 称为J (Hantus et al., 1997) (图1C)。在番茄(Solanum lycopersicum)木葡聚糖中, Xyl基团还可以连接α-L-阿拉伯糖基(Ara), 形成α-L-Araf-1,2-α-D-Xylp-1,6- β-D-Glcp侧链结构, 简称为S (图1D); S侧链上的Ara残基还可以进一步连接β-L-阿拉伯糖基(Ara), 形成β-L-Araf-1,3-α-L-Araf-1,2-α-D-Xylp-1,6-β-D-Glcp侧链, 简称为T (York et al., 1996)。在其它茄科作物如烟草(Nicotiana tabacum)中也含有S侧链, 即XSGG结构(Hoffman et al., 2005)。另外, 在苔藓类等维管植物中, Xyl基团可同时在其O-2和O-4位置上连接其它糖基, 如可连接β-D-半乳糖醛酸(GalA)和β-D-半乳糖(Gal), 简称为P; 或连接α-L-阿拉伯糖(Ara)和β-D-半乳糖(Gal), 简称为M; 或连接α-L-阿拉伯糖(Ara)和双糖β-D-Galp-1,6-β-D-Galp, 简称为N (Peña et al., 2008)。不同植物侧链连接的糖基常常会有所差异, 例如番茄中阿拉伯糖基代替了半乳糖基, 并且侧链不含岩藻糖基, 但它们具有类似的功能(Hoffman et al., 2005; Schultink et al., 2013)。这些不同的糖基修饰模式导致了不同植物中木葡聚糖的多样性。
Other Images/Table from this Article
|