Molecular Mechanism of Petal Doubling of Flower in Angiosperm
Received date: 2023-07-22
Accepted date: 2023-11-14
Online published: 2023-12-26
Double flower is characterized by the increase in the number of petals, the folding of petal or the increase in area of petal, which usually has higher ornamental and economic value. Focusing on the increased number of petal and petal-like organ in double flower, we summarized and discussed the molecular mechanism of the formation of double flower in some model plants and ornamental plants, including the key transcription factors and the epigenetic modifications such as miRNAs, DNA methylation, histone modification and chromatin remodeling involved in the regulation of petal number. And based on this, we discussed the developing trend of the future research.
Wen Chen , Yingying Zhou , Ping Luo , Yongyi Cui . Molecular Mechanism of Petal Doubling of Flower in Angiosperm[J]. Chinese Bulletin of Botany, 2024 , 59(2) : 257 -277 . DOI: 10.11983/CBB23096
[1] | Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9, 841-857. |
[2] | Baker CC, Sieber P, Wellmer F, Meyerowitz EM (2005). The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15, 303-315. |
[3] | Bezhani S, Winter C, Hershman S, Wagner JD, Kennedy JF, Kwon CS, Pfluger J, Su YH, Wagner D (2007). Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED. Plant Cell 19, 403-416. |
[4] | Birnbaum K, Jung JW, Wang JY, Lambert GM, Hirst JA, Galbraith DW, Benfey PN (2005). Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat Methods 2, 615-619. |
[5] | Bollier N, Sicard A, Leblond J, Latrasse D, Gonzalez N, Gévaudant F, Benhamed M, Raynaud C, Lenhard M, Chevalier C, Hernould M, Delmas F (2018). At-MINI ZINC FINGER2 and Sl-INHIBITOR OF MERISTEM ACTIVITY, a conserved missing link in the regulation of floral meristem termination in Arabidopsis and tomato. Plant Cell 30, 83-100. |
[6] | Bowman JL (1997). Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. J Biosci 22, 515-527. |
[7] | Bowman JL, Sakai H, Jack T, Weigel D, Mayer U, Meyerowitz EM (1992). SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development 114, 599-615. |
[8] | Bowman JL, Smyth DR, Meyerowitz EM (1991). Genetic interactions among floral homeotic genes of Arabidopsis. Development 112, 1-20. |
[9] | Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000). Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289, 617-619. |
[10] | Breuil-Broyer S, Morel P, De Almeida-Engler J, Coustham V, Negrutiu I, Trehin C (2004). High-resolution boundary analysis during Arabidopsis thaliana flower development. Plant J 38, 182-192. |
[11] | Brewer PB, Howles PA, Dorian K, Griffith ME, Ishida T, Kaplan-Levy RN, Kilinc A, Smyth DR (2004). PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development 131, 4035-4045. |
[12] | Broholm SK, P?ll?nen E, Ruokolainen S, T?htiharju S, Kotilainen M, Albert VA, Elomaa P, Teeri TH (2010). Functional characterization of B class MADS-box transcription factors in Gerbera hybrida. J Exp Bot 61, 75-85. |
[13] | Cai YM, Wang L, Ogutu CO, Yang QR, Luo BW, Liao L, Zheng BB, Zhang RX, Han YP (2021). The MADS-box gene PpPI is a key regulator of the double-flower trait in peach. Physiol Plantarum 173, 2119-2129. |
[14] | Carles CC, Lertpiriyapong K, Reville K, Fletcher JC (2004). The ULTRAPETALA1 gene functions early in Arabidopsis development to restrict shoot apical meristem activity and acts through WUSCHEL to regulate floral meristem determinacy. Genetics 167, 1893-1903. |
[15] | Cartolano M, Castillo R, Efremova N, Kuckenberg M, Zethof J, Gerats T, Schwarz-Sommer Z, Vandenbussche M (2007). A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat Genet 39, 901-905. |
[16] | Causier B, Schwarz-Sommer Z, Davies B (2010). Floral organ identity: 20 years of ABCs. Semin Cell Dev Biol 21, 73-79. |
[17] | Chapman MA, Leebens-Mack JH, Burke JM (2008). Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family. Mol Biol Evol 25, 1260-1273. |
[18] | Chen J, Shen CZ, Guo YP, Rao GY (2018). Patterning the Asteraceae capitulum: duplications and differential expression of the flower symmetry CYC2-like genes. Front Plant Sci 9, 551. |
[19] | Chen JW, Li Y, Li YH, Li YQ, Wang Y, Jiang CY, Choisy P, Xu T, Cai YM, Pei D, Jiang CZ, Gan SS, Gao JP, Ma N (2021). AUXIN RESPONSE FACTOR 18-HISTONE DEACETYLASE 6 module regulates floral organ identity in rose (Rosa hybrida). Plant Physiol 186, 1074-1087. |
[20] | Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002). DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110, 33-42. |
[21] | Chuang CF, Running MP, Williams RW, Meyerowitz EM (1999). The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev 13, 334-344. |
[22] | Coen ES, Meyerowitz EM (1991). The war of the whorls: genetic interactions controlling flower development. Nature 353, 31-37. |
[23] | Daum G, Medzihradszky A, Suzaki T, Lohmann JU (2014). A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci USA 111, 14619-14624. |
[24] | Davie JR, Chadee DN (1998). Regulation and regulatory parameters of histone modifications. J Cell Biochem 72, 203-213. |
[25] | Deal RB, Henikoff S (2010). A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev Cell 18, 1030-1040. |
[26] | Ding L, Yan SS, Jiang L, Zhao WS, Ning K, Zhao JY, Liu XF, Zhang J, Wang Q, Zhang XL (2015). HANABA TARANU (HAN) bridges meristem and organ primordia boundaries through PINHEAD, JAGGED, BLADE-ONPETIOLE2 and CYTOKININ OXIDASE 3 during flower development in Arabidopsis. PLoS Genet 11, e1005479. |
[27] | Dubois A, Raymond O, Maene M, Baudino S, Langlade NB, Boltz V, Vergne P, Bendahmane M (2010). Tinkering with the C-function: a molecular frame for the selection of double flowers in cultivated roses. PLoS One 5, e9288. |
[28] | Dyson MH, Rose S, Mahadevan LC (2001). Acetyllysine- binding and function of bromodomain-containing proteins in chromatin. Front Biosci 6, 853-865. |
[29] | Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, Mccune RA, Gehrke C (1982). Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res 10, 2709-2721. |
[30] | Fambrini M, Salvini M, Basile A, Pugliesi C (2014). Transposon-dependent induction of Vincent van Gogh’s sunflowers: exceptions revealed. Genesis 52, 315-327. |
[31] | Fambrini M, Salvini M, Pugliesi C (2011). A transposon- mediate inactivation of a CYCLOIDEA-like gene originates polysymmetric and androgynous ray flowers in Helianthus annuus. Genetica 139, 1521-1529. |
[32] | Finnegan EJ, Peacock WJ, Dennis ES (1996). Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA 93, 8449-8454. |
[33] | Fletcher JC (2001). The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis. Development 128, 1323-1333. |
[34] | Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283, 1911-1914. |
[35] | Gan ES, Huang JB, Ito T (2013). Functional roles of histone modification, chromatin remodeling and microRNAs in Arabidopsis flower development. Int Rev Cell Mol Biol 305, 115-161. |
[36] | Garcês HMP, Spencer VMR, Kim M (2016). Control of floret symmetry by RAY3, SvDIV1B, and SvRAD in the capitulum of Senecio vulgaris. Plant Physiol 171, 2055-2068. |
[37] | Gattolin S, Cirilli M, Chessa S, Stella A, Bassi D, Rossini L (2020). Mutations in orthologous PETALOSA TOE-type genes cause a dominant double-flower phenotype in phylogenetically distant eudicots. J Exp Bot 71, 2585-2595. |
[38] | Gattolin S, Cirilli M, Pacheco I, Ciacciulli A, Da Silva Linge C, Mauroux JB, Lambert P, Cammarata E, Bassi D, Pascal T, Rossini L (2018). Deletion of the miR172 target site in a TOE-type gene is a strong candidate variant for dominant double-flower trait in Rosaceae. Plant J 96, 358-371. |
[39] | Grini PE, Thorstensen T, Alm V, Vizcay-Barrena G, Windju SS, J?rstad TS, Wilson ZA, Aalen RB (2009). The ASH1 HOMOLOG 2 (ASHH2) histone H3 methyltransferase is required for ovule and anther development in Arabidopsis. PLoS One 4, e7817. |
[40] | Gul H, Tong ZG, Han XL, Nawaz I, Wahocho SA, Khan S, Zhang CX, Tian Y, Cong PH, Zhang LY (2019). Comparative transcriptome analysis between ornamental apple species provides insights into mechanism of double flowering. Agronomy 9, 112. |
[41] | Han Y, Tang AY, Wan HH, Zhang TX, Cheng TR, Wang J, Yang WR, Pan HT, Zhang QX (2018). An APETALA2 homolog, RcAP2, regulates the number of rose petals derived from stamens and response to temperature fluctuations. Front Plant Sci 9, 481. |
[42] | Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, Thei?en G (2002). Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol Biol Evol 19, 801-814. |
[43] | Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, Zhou NN, Bourke PM, Daccord N, Leus L, Schulz D, Van de Geest H, Hesselink T, Van Laere K, Debray K, Balzergue S, Thouroude T, Chastellier A, Jeauffre J, Voisine L, Gaillard S, Borm TJA, Arens P, Voorrips RE, Maliepaard C, Neu E, Linde M, Le Paslier MC, Bérard A, Bounon R, Clotault J, Choisne N, Quesneville H, Kawamura K, Aubourg S, Sakr S, Smulders MJM, Schijlen E, Bucher E, Debener T, De Riek J, Foucher F (2018). A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat Plants 4, 473-484. |
[44] | Hileman LC (2014). Bilateral flower symmetry—how, when and why? Curr Opin Plant Biol 17, 146-152. |
[45] | Hileman LC, Irish VF (2009). More is better: the uses of developmental genetic data to reconstruct perianth evolution. Am J Bot 96, 83-95. |
[46] | Hsu HF, Hsu WH, Lee YI, Mao WT, Yang JY, Li JY, Yang CH (2015). Model for perianth formation in orchids. Nat Plants 1, 15046. |
[47] | Hu L, Zheng TC, Cai M, Pan HT, Wang J, Zhang QX (2019). Transcriptome analysis during floral organ development provides insights into stamen petaloidy in Lagerstroemia speciosa. Plant Physiol Biochem 142, 510-518. |
[48] | Huang TB, Irish VF (2015). Temporal control of plant organ growth by TCP transcription factors. Curr Biol 25, 1765-1770. |
[49] | Huang TB, Irish VF (2016). Gene networks controlling petal organogenesis. J Exp Bot 67, 61-68. |
[50] | Huang TB, López-Giráldez F, Townsend JP, Irish VF (2012). RBE controls microRNA164 expression to effect floral organogenesis. Development 139, 2161-2169. |
[51] | Huang ZG, Shi T, Zheng BL, Yumul RE, Liu XG, You CJ, Gao ZH, Xiao LT, Chen XM (2017). APETALA2 antagonizes the transcriptional activity of AGAMOUS in regulating floral stem cells in Arabidopsis thaliana. New Phytol 215, 1197-1209. |
[52] | Hurtado L, Farrona S, Reyes JC (2006). The putative SWI/ SNF complex subunit BRAHMA activates flower homeotic genes in Arabidopsis thaliana. Plant Mol Biol 62, 291-304. |
[53] | Ito T, Ng KH, Lim TS, Yu H, Meyerowitz EM (2007). The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. Plant Cell 19, 3516-3529. |
[54] | Jacobsen SE, Meyerowitz EM (1997). Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277, 1100-1103. |
[55] | Jarillo JA, Pi?eiro M, Cubas P, Martínez-Zapater JM (2009). Chromatin remodeling in plant development. Int J Dev Biol 53, 1581-1596. |
[56] | Jiang S, Yi XW, Xu TL, Yang Y, Yu C, Luo L, Cheng TR, Wang J, Zhang QX, Pan HT (2021). Genetic analysis of petal number in Rosa. Plant Sci J 39, 142-151. (in Chinese) |
姜珊, 易星湾, 徐庭亮, 杨艺, 于超, 罗乐, 程堂仁, 王佳, 张启翔, 潘会堂 (2021). 月季花瓣数量遗传分析. 植物科学学报 39, 142-151. | |
[57] | Jing DL, Guo QG, Chen WW, Xia Y, Wu D, Dang JB, He Q, Liang GL (2018). Model evolution and molecular mechanism of angiosperm flower development. Plant Physiol J 54, 355-362. (in Chinese) |
景丹龙, 郭启高, 陈薇薇, 夏燕, 吴頔, 党江波, 何桥, 梁国鲁 (2018). 被子植物花器官发育的模型演变和分子调控. 植物生理学报 54, 355-362. | |
[58] | Jones-Rhoades MW, Bartel DP (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14, 787-799. |
[59] | Juntheikki-Palovaara I, T?htiharju S, Lan TY, Broholm SK, Rijpkema AS, Ruonala R, Kale L, Albert VA, Teeri TH, Elomaa P (2014). Functional diversification of duplicated CYC2 clade genes in regulation of inflorescence development in Gerbera hybrida (Asteraceae). Plant J 79, 783-796. |
[60] | Kagale S, Rozwadowski K (2011). EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6, 141-146. |
[61] | Kanno A, Saeki H, Kameya T, Saedler H, Theissen G (2003). Heterotopic expression of class B floral homeotic genes supports a modi?ed ABC model for tulip (Tulipa gesneriana). Plant Mol Biol 52, 831-841. |
[62] | Kaufmann K, Melzer R, Thei?en G (2005). MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347, 183-198. |
[63] | Kaufmann K, Wellmer F, Mui?o JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madue?o F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2010). Orchestration of floral initiation by APETALA1. Science 328, 85-89. |
[64] | Kermani MJ, Sarasan V, Roberts AV, Yokoya K, Wentworth J, Sieber VK (2003). Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theor Appl Genet 107, 1195-1200. |
[65] | Kim M, Cui ML, Cubas P, Gillies A, Lee K, Chapman MA, Abbott RJ, Coen E (2008). Regulatory genes control a key morphological and ecological trait transferred between species. Science 322, 1116-1119. |
[66] | Kramer EM, Di Stilio VS, Schluter PM (2003). Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Int J Plant Sci 164, 1-11. |
[67] | Krizek BA, Fletcher JC (2005). Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6, 688-698. |
[68] | Krizek BA, Lewis MW, Fletcher JC (2006). RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers. Plant J 45, 369-383. |
[69] | Krogan NT, Hogan K, Long JA (2012). APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Development 139, 4180-4190. |
[70] | Kwon CS, Chen CB, Wagner D (2005). WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis. Genes Dev 19, 992-1003. |
[71] | Lampugnani ER, Kilinc A, Smyth DR (2012). PETAL LOSS is a boundary gene that inhibits growth between developing sepals in Arabidopsis thaliana. Plant J 71, 724-735. |
[72] | Lampugnani ER, Kilinc A, Smyth DR (2013). Auxin controls petal initiation in Arabidopsis. Development 140, 185-194. |
[73] | Laufs P, Peaucelle A, Morin H, Traas J (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131, 4311-4322. |
[74] | Laux T, Mayer KF, Berger J, Jürgens G (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87-96. |
[75] | Lenhard M, Bohnert A, Jürgens G, Laux T (2001). Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105, 805-814. |
[76] | Li K, Li YQ, Wang Y, Li YH, He JN, Li YJ, Du LS, Gao YR, Ma N, Gao JP, Zhou XF (2022). Disruption of transcription factor RhMYB123 causes the transformation of stamen to malformed petal in rose (Rosa hybrida). Plant Cell Rep 41, 2293-2303. |
[77] | Li W, Xu QJ (2014). Epigenetic research progress on flowering time and flower organ development in angiosperms. Acta Hortic Sin 41, 1245-1256. (in Chinese) |
李巍, 徐启江 (2014). 被子植物开花时间和花器官发育的表观遗传调控研究进展. 园艺学报 41, 1245-1256. | |
[78] | Li X, Qin GJ, Chen ZL, Gu HY, Qu LJ (2008). A gain-of- function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis. Plant Mol Biol 66, 315-327. |
[79] | Li XL, Li JY, Fan ZQ, Liu ZC, Tanaka T, Yin HF (2017). Global gene expression defines faded whorl specification of double flower domestication in Camellia. Sci Rep 7, 3197. |
[80] | Lin ZY (2019). Studies on the regulatory mechanism of floral organ petaloid in lotus (Nelumbo nucifera). Doctoral dissertation. Beijing: University of Chinese Academy of Sciences (Wuhan Botanical Garden, Chinese Academy of Sciences). pp. 13-86. (in Chinese) |
林钟员 (2019). 莲的花器官瓣化分子调控机制的研究. 博士论文. 北京: 中国科学院大学(中国科学院武汉植物园). pp. 13-86. | |
[81] | Liu CY, Lu FL, Cui X, Cao XF (2010). Histone methylation in higher plants. Annu Rev Plant Biol 61, 395-420. |
[82] | Liu H, Sun M, Du DL, Pan HT, Cheng TR, Wang J, Zhang QX, Gao YK (2016). Whole-transcriptome analysis of differentially expressed genes in the ray florets and disc florets of Chrysanthemum morifolium. BMC Penomics 17, 398. |
[83] | Liu JY, Fu XD, Dong YW, Lu J, Ren M, Zhou NN, Wang CQ (2018). MIKCC-type MADS-box genes in Rosa chinensis: the remarkable expansion of ABCDE model genes and their roles in floral organogenesis. Hortic Res 5, 25. |
[84] | Liu XG, Kim YJ, Müller R, Yumul RE, Liu CY, Pan YY, Cao XF, Goodrich J, Chen XM (2011). AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb group proteins. Plant Cell 23, 3654-3670. |
[85] | Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D (2001). A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105, 793-803. |
[86] | Luo Y, Guo ZH, Li L (2013). Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol 380, 133-144. |
[87] | Ma N, Chen W, Fan TG, Tian YR, Zhang S, Zeng DX, Li YH (2015). Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida). BMC Plant Biol 15, 237. |
[88] | Mandaokar A, Browse J (2009). MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol 149, 851-862. |
[89] | Martínez-Gómez J, Galimba KD, Coté EY, Sullivan AM, Di Stilio VS (2021). Spontaneous homeotic mutants and genetic control of floral organ identity in a ranunculid. Evol Dev 23, 197-214. |
[90] | Mizzotti C, Fambrini M, Caporali E, Masiero S, Pugliesi C (2015). A CYCLOIDEA-like gene mutation in sunflower determines an unusual floret type able to produce filled achenes at the periphery of the pseudanthium. Botany 93, 171-181. |
[91] | Mui?o JM, de Bruijn S, Pajoro A, Geuten K, Vingron M, Angenent GC, Kaufmann K (2016). Evolution of DNA- binding sites of a floral master regulatory transcription factor. Mol Biol Evol 33, 185-200. |
[92] | Nakatsuka T, Saito M, Yamada E, Fujita K, Yamagishi N, Yoshikawa N, Nishihara M (2015). Isolation and characterization of the C-class MADS-box gene involved in the formation of double flowers in Japanese gentian. BMC Plant Biol 15, 182. |
[93] | Ng HH, Feng Q, Wang HB, Erdjument-Bromage H, Tempst P, Zhang Y, Struhl K (2002). Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 16, 1518-1527. |
[94] | Ng K, Yu H, Ito T (2009). AGAMOUS controls GIANT KILLER, a multifunctional chromatin modifier in reproductive organ patterning and differentiation. PLoS Biol 7, e1000251. |
[95] | Ning GG, Shi XP, Hu HR, Yan Y, Bao MZ (2009). Development of a range of polyploid lines in Petunia hybrida and the relationship of ploidy with the single-/double-flower trait. HortScience 44, 250-255. |
[96] | Noor SH, Ushijima K, Murata A, Yoshida K, Tanabe M, Tanigawa T, Kubo Y, Nakano R (2014). Double flower formation induced by silencing of C-class MADS-box genes and its variation among petunia cultivars. Sci Hortic 178, 1-7. |
[97] | ó’Maoiléidigh DS, Wuest SE, Rae L, Raganelli A, Ryan PT, Kwa?niewska K, Das P, Lohan AJ, Loftus B, Graciet E, Wellmer F (2013). Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS. Plant Cell 25, 2482-2503. |
[98] | Pajoro A, Madrigal P, Mui?o JM, Matus JT, Jin J, Mecchia MA, Debernardi JM, Palatnik JF, Balazadeh S, Arif M, ó’Maoiléidigh DS, Wellmer F, Krajewski P, Riechmann JL, Angenent GC, Kaufmann K (2014). Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biol 15, 1-19. |
[99] | Pan ZJ, Cheng CC, Tsai WC, Chung MC, Chen WH, Hu JM, Chen HH (2011). The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth. Plant Cell Physiol 52, 1515-1531. |
[100] | Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200-203. |
[101] | Peng LP, Li Y, Tan WQ, Wu SW, Hao Q, Tong NN, Wang ZY, Liu Z, Shu QY (2023). Combined genome-wide association studies and expression quantitative trait locus analysis uncovers a genetic regulatory network of floral organ number in a tree peony (Paeonia suffruticosa Andrews) breeding population. Hortic Res 10, uhad110. |
[102] | Pien S, Grossniklaus U (2007). Polycomb group and trithorax group proteins in Arabidopsis. Biochim Biophys Acta 1769, 375-382. |
[103] | Prunet N, Morel P, Thierry AM, Eshed Y, Bowman JL, Negrutiu I, Trehin C (2008). REBELOTE, SQUINT, and ULTRAPETALA1 function redundantly in the temporal regulation of floral meristem termination in Arabidopsis thaliana. Plant Cell 20, 901-919. |
[104] | Prunet N, Yang WB, Das P, Meyerowitz EM, Jack TP (2017). SUPERMAN prevents class B gene expression and promotes stem cell termination in the fourth whorl of Arabidopsis thaliana flowers. Proc Natl Acad Sci USA 114, 7166-7171. |
[105] | Quon TL, Lampugnani ER, Smyth DR (2017). PETAL LOSS and ROXY1 interact to limit growth within and between sepals but to promote petal initiation in Arabidopsis thaliana. Front Plant Sci 8, 152. |
[106] | Reyes JC, Hennig L, Gruissem W (2002). Chromatin-remodeling and memory factors. New regulators of plant development. Plant Physiol 130, 1090-1101. |
[107] | Rodriguez K, Perales M, Snipes S, Yadav RK, Diaz-Mendoza M, Reddy GV (2016). DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilization control WUSCHEL levels and spatial patterning. Proc Natl Acad Sci USA 113, E6307-E6315. |
[108] | Running MP, Meyerowitz EM (1996). Mutations in the PERIANTHIA gene of Arabidopsis specifically alter floral organ number and initiation pattern. Development 122, 1261-1269. |
[109] | Sakai H, Medrano LJ, Meyerowitz EM (1995). Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378, 199-203. |
[110] | Salamah A, Prihatiningsih R, Rostina I, Dwiranti A (2018). Comparative morphology of single and double flowers in Hibiscus rosa-sinensis L. (Malvaceae): a homeosis study. AIP Conf Proc 2023, 020136. |
[111] | Sasaki K, Yamaguchi H, Nakayama M, Aida R, Ohtsubo N (2014). Co-modification of class B genes TfDEF and TfGLO in Torenia fournieri Lind. alters both flower morphology and inflorescence architecture. Plant Mol Biol 86, 319-334. |
[112] | Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T (2000). The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635-644. |
[113] | Soltis DE, Chanderbali AS, Kim S, Buzgo M, Soltis PS (2007). The ABC model and its applicability to basal angiosperms. Ann Bot 100, 155-163. |
[114] | Song SS, Qi TC, Huang H, Ren QC, Wu DW, Chang CQ, Peng W, Liu YL, Peng JR, Xie DL (2011). The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23, 1000-1013. |
[115] | Spencer V, Kim M (2018). Re“CYC”ling molecular regulators in the evolution and development of flower symmetry. Semin Cell Dev Biol 79, 16-26. |
[116] | Sui MJ, Yan HJ, Wang ZZ, Qiu XQ, Jian HY, Wang QG, Chen M, Zhang H, Tang KX (2019). Identification of microRNA associated with flower organ development in Rosa chinensis ‘Viridiflora’. Plant Sci J 37, 37-46. (in Chinese) |
眭梦洁, 晏慧君, 王珍珍, 邱显钦, 蹇洪英, 王其刚, 陈敏, 张颢, 唐开学 (2019). 月季‘绿萼’花器官发育相关microRNA的鉴定及分析. 植物科学学报 37, 37-46. | |
[117] | Sun B, Xu YF, Ng KH, Ito T (2009). A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev 23, 1791-1804. |
[118] | Sun FH, Fang HY, Wen XH, Zhang LS (2023). Phylogenetic and expression analysis of MADS-box gene family in Rhododendron ovatum. Chin Bull Bot 58, 404-416. (in Chinese) |
孙福辉, 方慧仪, 温小蕙, 张亮生 (2023). 马银花MADS-box基因家族系统进化与表达分析. 植物学报 58, 404-416. | |
[119] | Sun KR, Xue YQ, Prijic Z, Wang SL, Markovic T, Tian CH, Wang YY, Xue JQ, Zhang XX (2022). DNA demethylation induces tree peony flowering with a low deformity rate compared to gibberellin by inducing PsFT expression under forcing culture conditions. Int J Mol Sci 23, 6632. |
[120] | Sun QW, Zhou DX (2008). Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. Proc Natl Acad Sci USA 105, 13679-13684. |
[121] | Sun YK, Li JY, Yin HF, Fan ZQ, Zhou XW (2013). Cloning and expression analysis of C function CjAGL6 gene cDNA from Camellia japonica ‘Jinpanlizhi’. Bull Bot Res 33, 330-338. (in Chinese) |
孙迎坤, 李纪元, 殷恒福, 范正琪, 周兴文 (2013). 重瓣山茶花‘金盘荔枝’ C功能基因CjAGL6的全长克隆与表达分析. 植物研究 33, 330-338. | |
[122] | T?htiharju S, Rijpkema AS, Vetterli A, Albert VA, Teeri TH, Elomaa P (2012). Evolution and diversification of the CYC/TB1 gene family in Asteraceae—a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae). Mol Biol Evol 29, 1155-1166. |
[123] | Takeda S, Matsumoto N, Okada K (2004). RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana. Development 131, 425-434. |
[124] | Tang RH, Zhang JC, Zhuang WJ, Wu WR (2003). Progress of the SUPERMAN epigenetic mutation in Arabidopsis. Hereditas 25, 620-622. (in Chinese) |
唐荣华, 张君诚, 庄伟建, 吴为人 (2003). 拟南芥SUPERMAN基因表观突变的研究进展. 遗传 25, 620-622. | |
[125] | Thei?en G (2001). Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4, 75-85. |
[126] | Thei?en G, Melzer R, Rümpler F (2016). MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143, 3259-3271. |
[127] | Thei?en G, Saedler H (2001). Floral quartets. Nature 409, 469-471. |
[128] | Thomson B, Wellmer F (2019). Molecular regulation of flower development. Curr Top Dev Biol 131, 185-210. |
[129] | Thomson B, Zheng BB, Wellmer F (2017). Floral organogenesis: when knowing your ABCs is not enough. Plant Physiol 173, 56-64. |
[130] | van Tunen AJ, Eikelboom W, Angenent GC (1993). Floral organogenesis in Tulipa. Flowering Newsl (16), 33-35, 37-38. |
[131] | Varga-Weisz P (2001). ATP-dependent chromatin remodeling factors: nucleosome shufflers with many missions. Oncogene 20, 3076-3085. |
[132] | Wade PA (2001). Methyl CpG binding proteins: coupling chromatin architecture to gene regulation. Oncogene 20, 3166-3173. |
[133] | Wang JD, Zhou Y, Yu JW, Fan XL, Zhang CQ, Li QF, Liu QQ (2020). Advances in the regulation of plant growth and development and stress response by miR172-AP2 module. Chin Bull Bot 55, 205-215. (in Chinese) |
王劲东, 周豫, 余佳雯, 范晓磊, 张昌泉, 李钱峰, 刘巧泉 (2020). miR172-AP2模块调控植物生长发育及逆境响应的研究进展. 植物学报 55, 205-215. | |
[134] | Wellmer F, Graciet E, Riechmann JL (2014). Specification of floral organs in Arabidopsis. J Exp Bot 65, 1-9. |
[135] | Wen XH (2019). The construction of genetic network underlying ray and disc florets on capitulum in Chrysanthemum lavandulifolium. Doctoral dissertation. Beijing: Beijing Forestry University. pp. 69-92. (in Chinese) |
温小蕙 (2019). 甘菊头状花序上舌状花和管状花发育调控网络的构建. 博士论文. 北京: 北京林业大学. pp. 69-92. | |
[136] | Wen XH, Qi S, Huang H, Wu XY, Zhang BH, Fan GX, Yang LW, Hong Y, Dai SL (2019). The expression and interactions of ABCE-class and CYC2-like genes in the capitulum development of Chrysanthemum lavandulifolium and C. × morifolium. Plant Growth Regul 88, 205-214. |
[137] | Wu F, Shi XW, Lin XL, Liu Y, Chong K, Thei?en G, Meng Z (2017). The ABCs of flower development: mutational analysis of AP1/FUL-like genes in rice provides evidence for a homeotic (A)-function in grasses. Plant J 89, 310-324. |
[138] | Wu MF, Sang Y, Bezhani S, Yamaguchi N, Han SK, Li ZT, Su YH, Slewinski TL, Wagner D (2012). SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors. Proc Natl Acad Sci USA 109, 3576-3581. |
[139] | Wuest SE, O’Maoileidigh DS, Rae L, Kwasniewska K, Raganelli A, Hanczaryk K, Lohan AJ, Loftus B, Graciet E, Wellmer F (2012). Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc Natl Acad Sci USA 109, 13452-13457. |
[140] | Xia Y, Shi M, Chen WW, Hu RQ, Jing DL, Wu D, Wang SM, Li QF, Deng HH, Guo QG, Liang GL (2020). Expression pattern and functional characterization of PISTILLATA ortholog associated with the formation of petaloid sepals in double-flower Eriobotrya japonica (Rosaceae). Front Plant Sci 10, 1685. |
[141] | Xiong YY, Wang J (2019). Review of the research progress and prospect of double petals. Nor Hortic (9), 153-158. (in Chinese) |
熊阳阳, 王锦 (2019). 重瓣花研究进展与展望. 北方园艺 (9), 153-158. | |
[142] | Xu F, Zhang KL, Grunstein M (2005). Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121, 375-385. |
[143] | Xu YF, Prunet N, Gan ES, Wang YB, Stewart D, Wellmer F, Huang JB, Yamaguchi N, Tatsumi Y, Kojima M, Kiba T, Sakakibara H, Jack TP, Meyerowitz EM, Ito T (2018). SUPERMAN regulates floral whorl boundaries through control of auxin biosynthesis. EMBO J 37, e97499. |
[144] | Yadav RK, Girke T, Pasala S, Xie MT, Reddy GV (2009). Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci USA 106, 4941-4946. |
[145] | Yadav RK, Perales M, Gruel J, Girke T, J?nsson H, Reddy GV (2011). WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 25, 2025-2030. |
[146] | Yan HJ, Shi SC, Ma N, Cao XQ, Zhang H, Qiu XQ, Wang QG, Jian HY, Zhou NN, Zhang Z, Tang KX (2018). Graft-accelerated virus-induced gene silencing facilitates functional genomics in rose flowers. J Integr Plant Biol 60, 34-44. |
[147] | Zahn LM, Kong HZ, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, Depamphilis CW, Ma H (2005). The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169, 2209-2223. |
[148] | Zaret KS, Mango SE (2016). Pioneer transcription factors, chromatin dynamics, and cell fate control. Curr Opin Genet Dev 37, 76-81. |
[149] | Zhang CL, Wei LD, Yu XM, Li H, Wang WJ, Wu SZ, Duan F, Bao MZ, Chan Z, He YH (2021). Functional conservation and divergence of SEPALLATA-like genes in the development of two-type florets in marigold. Plant Sci 309, 110938. |
[150] | Zhang DY, Zhao XW, Li YY, Ke SJ, Yin WL, Lan SR, Liu ZJ (2022). Advances and prospects of orchid research and industrialization. Hortic Res 9, uhac220. |
[151] | Zhang JH, Zhang SG, Qi LW, Tong ZK (2014). Research advances in post-transcriptional modification and degradation of mature microRNAs in plants. Chin Bull Bot 49, 483-489. (in Chinese) |
张俊红, 张守攻, 齐力旺, 童再康 (2014). 植物成熟microRNA转录后修饰与降解的研究进展. 植物学报 49, 483-489. | |
[152] | Zhang K, Guo XX, Liu XG, Guo L (2018). Advances in research on floral meristem determinacy mechanisms in plants. Chin J Eco-Agricul 26, 1573-1584. (in Chinese) |
张科, 郭鑫鑫, 刘西岗, 郭琳 (2018). 植物花分生组织终止发育机制的研究进展. 中国生态农业学报 26, 1573-1584. | |
[153] | Zhang LW, Eugeni EE, Parthun MR, Freitas MA (2003). Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 112, 77-86. |
[154] | Zhang T, Zhao YF, Juntheikki I, Mouhu K, Broholm SK, Rijpkema AS, Kins L, Lan TY, Albert VA, Teeri TH, Elomaa P (2017). Dissecting functions of SEPALLATA- like MADS box genes in patterning of the pseudanthial inflorescence of Gerbera hybrida. New Phytol 216, 939-954. |
[155] | Zhao YF, Broholm SK, Wang F, Rijpkema AS, Lan TY, Albert VA, Teeri TH, Elomaa P (2020). TCP and MADS- box transcription factor networks regulate heteromorphic flower type identity in Gerbera hybrida. Plant Physiol 184, 1455-1468. |
[156] | Zhao YQ, Liu QL (2009). Research advances in the formation mechanism and genetic characters of double flowers. Acta Bot Boreal Occident Sin 29, 832-841. (in Chinese) |
赵印泉, 刘青林 (2009). 重瓣花的形成机理及遗传特性研究进展. 西北植物学报 29, 832-841. | |
[157] | Zhao YX, Medrano L, Ohashi K, Fletcher JC, Yu H, Sakai H, Meyerowitz EM (2004). HANABA TARANU is a GATA transcription factor that regulates shoot apical meristem and flower development in Arabidopsis. Plant Cell 16, 2586-2600. |
[158] | Zheng GH, Wei W, Li YP, Kan LJ, Wang FX, Zhang X, Li F, Liu ZC, Kang CY (2019). Conserved and novel roles of miR164-CUC2 regulatory module in specifying leaf and floral organ morphology in strawberry. New Phytol 224, 480-492. |
/
〈 | 〉 |