EXPERIMENTAL COMMUNICATIONS

Morphological Identification and Development of Linkage Markers for Lobed Ray Floret Mutants in Marigold (Tagetes erecta)

Expand
  • 1National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
    2State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
    3Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen 448000, China
These authors contributed equally to this paper

Received date: 2022-10-03

  Accepted date: 2023-03-07

  Online published: 2023-03-10

Abstract

Marigold (Tagetes erecta) is an important ornamental plant of the genus Tagetes in the Asteraceae. The morphology of its ray floret corolla varies from smooth, undulate to different degree of incision. An F2 population was constructed from a cross between the mutant marigold JH with five-lobed corollas and fertile stamens in the first round florets and the inbred line S5 with smooth corolla of ray florets and aborting stamens. Inheritance analysis showed that the mutation trait of JH was controlled by a single-dominant gene, named Tagetes erecta lobed ray florets (Telf). Histological and cytological observations showed that the first round ray florets of JH were disk-like, with five lobes formed at the top of the corolla tube, the middle and lower parts were tubular, and the development of anthers and pollen grains are to normal. Using BSR-seq and comparative genomics methods, the gene Telf controlling lobed ray florets was mapped in the interval of 37003-SCAR and 34032-CAPS. 37003-SCAR marker was 3.684 cM from the Telf gene. On the other side of the gene, 34032-CAPS marker was placed about 3.517 cM from Telf. This study laid a foundation for the subsequent fine mapping of the target gene Telf, and also provided a new method for the selection of molecular markers in marigold.

Cite this article

Wenjing Wang, Yu Zhu, Hongming Zhang, Ludan Wei, Qingping Yi, Xiaomin Yu, Yuhan Liu, Lixue Zhang, Wenhan Cheng, Yanhong He . Morphological Identification and Development of Linkage Markers for Lobed Ray Floret Mutants in Marigold (Tagetes erecta)[J]. Chinese Bulletin of Botany, 2023 , 58(6) : 893 -904 . DOI: 10.11983/CBB22231

References

[1] 陈笛, 刘家亮, 孟祥春, 王小菁 (2006). 南美蟛蜞菊花的生长发育. 植物学通报 23, 37-43.
[2] 何燕红 (2010). 万寿菊雄性不育性状的遗传分析及其育种应用. 博士论文. 武汉: 华中农业大学. pp. 24-25.
[3] 夏伟康 (2020). 菊花转录因子CmCUC2和CmCUC3的功能分析. 硕士论文. 南京: 南京农业大学. pp. 50-51.
[4] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment search tool. J Mol Biol 215, 403-410.
[5] Bar M, Ori N (2014). Leaf development and morphogenesis. Development 141, 4219-4230.
[6] Bar M, Ori N (2015). Compound leaf development in model plant species. Curr Opin Plant Biol 23, 61-69.
[7] Bello MA, álvarez I, Torices R, Fuertes-Aguilar J (2013). Floral development and evolution of capitulum structure in Anacyclus (Anthemideae, Asteraceae). Ann Bot 112, 1597-1612.
[8] Blein T, Hasson A, Laufs P (2010). Leaf development: what it needs to be complex. Curr Opin Plant Biol 13, 75-82.
[9] Bolger AM, Lohse M, Usadel B (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.
[10] Broholm SK, T?ehtiharju S, Laitinen RAE, Albert VA, Teeri TH, Elomaa P (2008). A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc Natl Acad Sci USA 105, 9117-9122.
[11] Chapman MA, Tang SX, Draeger D, Nambeesan S, Shaffer H, Barb JG, Knapp SJ, Burke JM (2012). Genetic analysis of floral symmetry in Van Gogh's sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae. PLoS Genet 8, e1002628.
[12] Chen J, Shen CZ, Guo YP, Rao GY (2018). Patterning the Asteraceae capitulum: duplications and differential expression of the flower symmetry CYC2-like genes. Front Plant Sci 9, 551.
[13] Cheng PL, Liu YN, Yang YM, Chen H, Cheng H, Hu Q, Zhang ZX, Gao JJ, Zhang JX, Ding L, Fang WM, Chen SM, Chen FD, Jiang JF (2020). CmBES1 is a regulator of boundary formation in chrysanthemum ray florets. Hortic Res 7, 129.
[14] Dadpour MR, Naghiloo S, Gohari G (2011). Inflorescence and floral ontogeny in Osteospermum ecklonis (Asteraceae). Botany 89, 605-614.
[15] Dinneny JR, Yadegari R, Fischer RL, Yanofsky MF, Weigel D (2004). The role of JAGGED in shaping lateral organs. Development 131, 1101-1110.
[16] Endress PK, Matthews ML (2006). Elaborate petals and staminodes in eudicots: diversity, function, and evolution. Org Divers Evol 6, 257-293.
[17] Fambrini M, Salvini M, Pugliesi C (2011). A transposon-mediate inactivation of a CYCLOIDEA-like gene originates polysymmetric and androgynous ray flowers in Helianthus annuus. Genetica 139, 1521-1529.
[18] Fu XH, Shan HY, Yao X, Cheng J, Jiang YC, Yin XF, Kong HZ (2022). Petal development and elaboration. J Exp Bot 73, 3308-3318.
[19] Hase Y, Fujioka S, Yoshida S, Sun GQ, Umeda M, Tanaka A (2005). Ectopic endoreduplication caused by sterol alteration results in serrated petals in Arabidopsis. J Exp Bot 56, 1263-1268.
[20] Hase Y, Tanaka A, Baba T, Watanabe H (2000). FRL1 is required for petal and sepal development in Arabidopsis. Plant J 24, 21-32.
[21] Huang D, Li XW, Sun M, Zhang TX, Pan HT, Cheng TR, Wang J, Zhang QX (2016). Identification and characterization of CYC-like genes in regulation of ray floret development in Chrysanthemum morifolium. Front Plant Sci 7, 1633.
[22] Kalisz S, Ree RH, Sargent RD (2006). Linking floral symmetry genes to breeding system evolution. Trends Plant Sci 11, 568-573.
[23] Kim M, Cui ML, Cubas P, Gillies A, Lee K, Chapman MA, Abbott RJ, Coen E (2008). Regulatory genes control a key morphological and ecological trait transferred between species. Science 322, 1116-1119.
[24] Laitinen RAE, Broholm S, Albert VA, Teeri TH, Elomaa P (2006). Patterns of MADS-box gene expression mark flower-type development in Gerbera hybrida (Asteraceae). BMC Plant Biol 6, 11.
[25] Li H, Durbin R (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
[26] Li ZQ, Xu YH (2022). Bulk segregation analysis in the NGS era: a review of its teenage years. Plant J 109, 1355-1374.
[27] Liu SZ, Yeh CT, Tang HM, Nettleton D, Schnable PS (2012). Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One 7, e36406.
[28] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010). The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297-1303.
[29] Michelmore RW, Paran I, Kesseli RV (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88, 9828-9832.
[30] Ohno CK, Reddy GV, Heisler MGB, Meyerowitz EM (2004). The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development. Development 131, 1111-1122.
[31] Panero JL, Freire SE, Ariza EL, Crozier BS, Barboza GE, Cantero JJ (2014). Resolution of deep nodes yields an improved backbone phylogeny and a new basal lineage to study early evolution of Asteraceae. Mol Phylogen Evol 80, 43-53.
[32] Prusinkiewicz P, Erasmus Y, Lane B, Harder LD, Coen E (2007). Evolution and development of inflorescence architectures. Science 316, 1452-1456.
[33] Sauret-Güeto S, Schiessl K, Bangham A, Sablowski R, Coen E (2013). JAGGED controls Arabidopsis petal growth and shape by interacting with a divergent polarity field. PLoS Biol 11, e1001550.
[34] Shen CZ, Chen J, Zhang CJ, Rao GY, Guo YP (2021). Dysfunction of CYC2g is responsible for the evolutionary shift from radiate to disciform flowerheads in the Chrysanthemum group (Asteraceae: Anthemideae). Plant J 106, 1024-1038.
[35] Song XB, Gao K, Fan GX, Zhao XG, Liu ZL, Dai SL (2018a). Quantitative classification of the morphological traits of ray florets in large-flowered chrysanthemum. HortScience 53, 1258-1265.
[36] Song XB, Xu YH, Gao K, Fan GX, Zhang F, Deng CY, Dai SL, Huang H, Xin HG, Li YY (2020). High-density genetic map construction and identification of loci controlling flower-type traits in chrysanthemum (Chrysanthemum × morifolium Ramat.). Hortic Res 7, 108.
[37] Song XB, Zhao XG, Fan GX, Gao K, Dai SL, Zhang MM, Ma CF, Wu XY (2018b). Genetic analysis of the corolla tube merged degree and the relative number of ray florets in chrysanthemum (Chrysanthemum × morifolium Ramat.). Sci Hortic 242, 214-224.
[38] T?htiharju S, Rijpkema AS, Vetterli A, Albert VA, Teeri TH, Elomaa P (2012). Evolution and diversification of the CYC/TB1 gene family in Asteraceae—a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae). Mol Biol Evol 29, 1155-1166.
[39] Wang QJ, Zhang XN, Lin SN, Yang SZ, Yan XL, Bendahmane M, Bao MZ, Fu XP (2020). Mapping a double flower phenotype-associated gene DcAP2L in Dianthus chinensis. J Exp Bot 71, 1915-1927.
[40] Wyatt R (1982). Inflorescence architecture: how flower number, arrangement, and phenology affect pollination and fruit-set. Am J Bot 69, 585-594.
[41] Zhao YF, Zhang T, Broholm SK, T?htiharju S, Mouhu K, Albert VA, Teeri TH, Elomaa P (2016). Evolutionary co-option of floral meristem identity genes for patterning of the flower-like Asteraceae inflorescence. Plant Physiol 172, 284-296.
[42] Zheng GH, Wei W, Li YP, Kan LJ, Wang FX, Zhang X, Li F, Liu ZC, Kang CY (2019). Conserved and novel roles of miR164-CUC2 regulatory module in specifying leaf and floral organ morphology in strawberry. New Phytol 224, 480-492.
Outlines

/

674-3466/bottom_en.htm"-->