EXPERIMENTAL COMMUNICATIONS

Analyses on the Transcription and Structure Variation of β-carotene Isomerase Gene Family in Foxtail Millet

Expand
  • Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Received date: 2022-07-28

  Accepted date: 2022-12-01

  Online published: 2022-12-23

Abstract

Plant architecture is of great importance for yield improvement of cereal crops, and improvement of plant architecture is of great significance for improving crop yield potential. As a newly identified plant hormone, strigolactones is one of plant hormones regulating branching and tillering by inhibiting the elongation of axillary buds. β-carotene isomerase is the key enzyme for strigolactone synthesis. By the typical domain Pfam:DUF4033, all members in the β-carotene isomerase gene family in foxtail millet (Setaria italica) were identified (Seita.8G168400, Seita.6G088800, Seita.3G- 050900), encoding 271 to 277 amino acid residues with molecular weight ranging from 30.1 kDa to 30.4 kDa, isoelectric point ranging from 5.85 to 9.31, and instability coefficient ranging from 38.48 to 74.47. All members were subcellularly localized in chloroplast, and were grouped into three different evolutionary branches. Cis-element analysis revealed that SiD27-1 (Seita.8G168400) was involved in regulating circadian rhythm, auxin-mediated development, and response to drought and low temperature. Transcription of SiD27-1 was down-regulated in foxtail millet accessions with more tillers, and in low phosphorus treatment could respond to faster than all other members. Haplotype variation analysis revealed that H001 of SiD27-1 may contribute more to plant height, heading date and grain yield than other haplotypes. We inferred that SiD27-1 was involved in strigolactone synthesis and plant architecture in foxtail millet. It laid the foundation for in-depth analysis of regulatory mechanism of D27s on the formation of foxtail millet tillering, and provided allelic variation sites for molecular breeding of foxtail millet.

Cite this article

Hui Zhang, Hongkai Liang, Hui Zhi, Linlin Zhang, Xianmin Diao, Guanqing Jia . Analyses on the Transcription and Structure Variation of β-carotene Isomerase Gene Family in Foxtail Millet[J]. Chinese Bulletin of Botany, 2023 , 58(1) : 34 -50 . DOI: 10.11983/CBB22171

References

[1] 常金科, 黎家 (2017). 独脚金内酯信号感知揭示配体-受体作用新机制. 植物学报 52, 123-127.
[2] 刁现民 (2019). 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学 52, 3943-3949.
[3] 贾冠清, 刁现民 (2017). 谷子(Setaria italica (L.) P. Beauv.)作为功能基因组研究模式植物的发展现状及趋势. 生命科学 29, 292-301.
[4] 黎家 (2018). 植物激素——植物学研究永恒的话题. 生物技术通报 34, 5-6.
[5] 黎舒佳, 高谨, 李家洋, 王永红 (2015). 独脚金内酯调控水稻分蘖的研究进展. 植物学报 50, 539-548.
[6] 李学勇, 钱前, 李家洋 (2003). 水稻分蘖的分子机理研究. 中国科学院院刊 18, 274-276.
[7] 刘艳, 彭晓丹, 李洋 (2016). 几种水培液对香根草生长情况的影响. 农技服务 33, 23-25.
[8] 王闵霞, 彭鹏, 龙海馨, 王平, 白玉路, 李学勇 (2014). 独脚金内酯途径相关基因的研究进展. 分子植物育种 12, 603-609.
[9] 吴转娣, 刘新龙, 刘家勇, 昝逢刚, 李旭娟, 刘洪博, 林秀琴, 陈学宽, 苏火生, 赵培方, 吴才文 (2017). 甘蔗独脚金内酯生物合成关键基因ScD27的克隆与表达分析. 作物学报 43, 31-41.
[10] 许智宏, 李家洋 (2006). 中国植物激素研究: 过去, 现在和未来. 植物学报 23, 433.
[11] Abuauf H, Haider I, Jia KP, Ablazov A, Mi JN, Blilou I, Al-Babili S (2018). The Arabidopsis DWARF27 gene encodes an all-trans-/9-cis-β-carotene isomerase and is induced by auxin, abscisic acid and phosphate deficiency. Plant Sci 277, 33-42.
[12] Bailey TL, Williams N, Misleh C, Li WW (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34, W369-W373.
[13] Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009). Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150, 482-493.
[14] Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R (2020). TBtools: an integrative toolkit de- veloped for interactive analyses of big biological data. Mol Plant 13, 1194-1202.
[15] Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966). Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154, 1189-1190.
[16] Fang ZM, Ji YY, Hu J, Guo RK, Sun SY, Wang XL (2020). Strigolactones and brassinosteroids antagonistically regu- late the stability of the D53-OsBZR1 complex to determi- ne FC1 expression in rice tillering. Mol Plant 13, 586-597.
[17] Gao HB, Wang WG, Wang YH, Liang Y (2019). Molecular mechanisms underlying plant architecture and its environ- mental plasticity in rice. Mol Breeding 39, 167.
[18] Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange S (2008). Strigolactone inhibition of shoot branching. Nature 455, 189-194.
[19] Hammond JP, White PJ (2011). Sugar signaling in root responses to low phosphorus availability. Plant Physiol 156, 1033-1040.
[20] Ito S, Ito K, Abeta N, Takahashi R, Sasaki Y, Yajima S (2016). Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition. Plant Signaling Behav 11, e1126031.
[21] Kebrom TH, Mullet JE (2016). Transcriptome profiling of tiller buds provides new insights into PhyB regulation of tillering and indeterminate growth in sorghum. Plant Physiol 170, 2232-2250.
[22] Koltai H, Beveridge CA (2013). Strigolactones and the coordinated development of shoot and root. In: Balu?ka F, ed. Long-Distance Systemic Signaling and Communication in Plants. Berlin: Springer. pp. 189-204.
[23] Koltai H, Cohen M, Chesin O, Mayzlish-Gati E, Bécard G, Puech V, Dor BB, Resnick N, Wininger S, Kapulnik Y (2011). Light is a positive regulator of strigolactone levels in tomato roots. J Plant Physiol 168, 1993-1996.
[24] Kronzucker HJ, Kirk GJD, Siddiqi MY, Glass ADM (1998). Effects of hypoxia on 13NH4+ fluxes in rice roots: kinetics and compartmental analysis. Plant Physiol 116, 581-587.
[25] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van De Peer Y, Rouzé P, Rombauts S (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30, 325-327.
[26] Li B, Du X, Fei YY, Wang FQ, Xu Y, Li X, Li WQ, Chen ZH, Fan FJ, Wang J, Tao YJ, Jiang YJ, Zhu QH, Yang J (2021). Efficient breeding of early-maturing rice cultivar by editing PHYC via CRISPR/Cas9. Rice 14, 86.
[27] Liao ZG, Yu H, Duan JB, Yuan K, Yu CJ, Meng XB, Kou LQ, Chen MJ, Jing YH, Liu GF, Smith SM, Li JY (2019). SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat Commun 10, 2738.
[28] Lin H, Wang RX, Qian Q, Yan MX, Meng XB, Fu ZM, Yan CY, Jiang B, Su Z, Li JY, Wang YH (2009). DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21, 1512-1525.
[29] López-Ráez JA, Charnikhova T, Gómez-Roldán V, Mausova R, Kohlen W, De Vos R, Verstappen F, Puech- Pages V, Bécard G, Mulder P, Bouwmeester H (2008). Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178, 863-874.
[30] Marro N, Lidoy J, Chico Má, Rial C, García J, Varela RM, Macías FA, Pozo MJ, Janou?ková M, López-Ráez JA (2022). Strigolactones: new players in the nitrogen-phosphorus signaling interplay. Plant Cell Environ 45, 512-527.
[31] Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005). The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139, 920-934.
[32] Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R (2020). IQ- TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37, 1530-1534.
[33] Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010). Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate defici- ency in rice. Plant Cell Physiol 51, 1118-1126.
[34] Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195-200.
[35] Wang B, Smith SM, Li JY (2018). Genetic regulation of shoot architecture. Annu Rev Plant Biol 69, 437-468.
[36] Wang YX, Shang LG, Yu H, Zeng LJ, Hu J, Ni S, Rao YC, Li SF, Chu JF, Meng XB, Wang L, Hu P, Yan JJ, Kang SJ, Qu MH, Lin H, Wang T, Wang Q, Hu XM, Chen HQ, Wang B, Gao ZY, Guo LB, Zeng DL, Zhu XD, Xiong GS, Li JY, Qian Q (2020). A strigolactone biosynthesis gene contributed to the green revolution in rice. Mol Plant 13, 923-932.
[37] Waters MT, Brewer PB, Bussell JD, Smith SM, Beveridge CA (2012). The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol 159, 1073-1085.
[38] Wen C, Zhao QC, Nie J, Liu GQ, Shen L, Cheng CX, Xi L, Ma N, Zhao LJ (2016). Physiological controls of chrysanthemum DgD27 gene expression in regulation of shoot branching. Plant Cell Rep 35, 1053-1070.
[39] Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007). Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225, 1031-1038.
[40] Zhang L, Yu H, Ma B, Liu GF, Wang JJ, Wang JM, Gao RC, Li JJ, Liu JY, Xu J, Zhang YY, Li Q, Huang XH, Xu JL, Li JM, Qian Q, Han B, He ZH, Li JY (2017). A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat Commun 8, 14798.
[41] Zhao B, Wu TT, Ma SS, Jiang DJ, Bie XM, Sui N, Zhang XS, Wang F (2020). TaD27-B gene controls the tiller number in hexaploid wheat. Plant Biotechnol J 18, 513-525.
Outlines

/

674-3466/bottom_en.htm"-->