·REVIEWS· FORAGE BIOLOGY SPECIAL ISSUE

Research Progress in Efficient Fixation, Transport, Assimilation of Carbon and Nitrogen in Legume Forages

Expand
  • 1State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
    2Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
    3Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    4College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2022-07-17

  Accepted date: 2022-10-09

  Online published: 2022-10-09

Abstract

In China, the demand for high-quality forage is continuously increasing. Improving the yield and quality of various forages, especially alfalfa (Medicago sativa), has been an important scientific and economic goal for plant breeders. Fixation of carbon dioxide by photosynthesis is the basis for the formation of forage biomass. Nitrogen absorption, fixation, transport and assimilation are important biological processes that affect the crude protein content of forage and determine its quality. Both biological processes are interdependent to each other. Therefore, we propose the new breeding ideas for efficient fixation, transport and assimilation of carbon and nitrogen in alfalfa, and summarize the latest progress in efficient fixation and transport of carbon dioxide, nitrogen fixation and absorption, as well as nitrogen transport and assimilation in recent years, so as to shed some light on molecular design breeding for forage with high biomass and high protein content in the future.

Cite this article

Zhaosheng Kong, Wenqiang Yang, Baichen Wang, Rongcheng Lin . Research Progress in Efficient Fixation, Transport, Assimilation of Carbon and Nitrogen in Legume Forages[J]. Chinese Bulletin of Botany, 2022 , 57(6) : 764 -773 . DOI: 10.11983/CBB22157

References

[1] 丁莉, 钟泽璞, 李世仪, 张崇浩, 白克智, 匡廷云 (1996). CO2倍增对紫花苜蓿碳、氮同化与分配的影响. 植物学报 38, 83-86.
[2] 范润钧, 邓波, 陈本建, 柴小琴, 张蕴薇 (2010). 航天搭载紫花苜蓿连续后代变异株系选育. 山西农业科学 38, 7-9, 64.
[3] 冯银平, 沈海花, 罗永开, 徐龙超, 刘上石, 朱言坤, 赵梦颖, 邢爱军, 方精云 (2020). 种植密度对苜蓿生长及生物量的影响. 植物生态学报 44, 248-256.
[4] 高永勇 (2018). 共转化光呼吸支路基因的转基因牧草研究. 硕士论文. 广州: 华南农业大学. pp. 1-57.
[5] 郭孝, 刘太宇 (2005). 优良牧草与花生间作套种的研究. 中国农学通报 21, 149-152, 229.
[6] 韩文轩, 方精云 (2008). 植物种群的自然稀疏规律—— -3/2还是-4/3? 北京大学学报(自然科学版) 44, 661-668.
[7] 何树斌 (2012). 不同氮素和水分供应下紫花苜蓿碳同化和C/N响应机制研究. 博士论文. 兰州: 兰州大学. pp. 1-95.
[8] 洪绂曾 (2009). 苜蓿科学. 北京: 中国农业出版社. pp. 13-28.
[9] 金宝花 (2019). 拟南芥高光效基因AtNRPC1的生物学功能研究. 硕士论文. 金华: 浙江师范大学. pp. 1-79.
[10] 雷明月, 许为钢, 李小博, 张庆琛, 王会伟, 张磊, 方宇辉, 李艳, 李春鑫 (2017). 玉米C4光合酶基因导入对拟南芥光合特性及抗旱性的影响. 麦类作物学报 37, 108-115.
[11] 李霞, 焦德茂, 戴传超, 王守海, 吴爽, 李成荃 (2001). 转育PEPC基因的杂交水稻的光合生理特性. 作物学报 27, 137-143.
[12] 李小博, 许为钢, 雷明月, 张庆琛, 王会伟, 李艳, 华夏, 高崇 (2017). 转玉米C4光合途径pepcppdknadp-me基因拟南芥光合特性对强光胁迫的反应. 分子植物育种 15, 911-919.
[13] 李玉帅 (2021). 玉米PEPC基因在烟草和紫花苜蓿中的表达分析. 硕士论文. 新乡: 河南科技学院. pp. 1-105.
[14] 蔺芳, 刘晓静, 童长春, 吴勇 (2019). 间作对不同类型饲料作物光能利用特征及生产能力的影响. 应用生态学报 30, 3452-3462.
[15] 卢发光, 顾立峰, 刘昱茜, 任桢, 施雨, 徐振然, 周桂生, 卢海潼, 王小山, 张网定, 任志强, 朱广龙 (2021). 种植密度和施氮量互作对盐碱地紫花苜蓿生长性能和生理特性的影响. 草业科学 38, 1570-1578.
[16] 卢嘉锡, 蔡启瑞, 万惠霖, 陈华癸, 沈善炯, 李季伦 (2000). 生物固氮: 全球的挑战和未来的需要. 科学新闻 ( 39), 6.
[17] 吴梅 (2011). C4PEPC基因导入油菜的研究. 硕士论文. 合肥: 安徽农业大学. pp. 1-44.
[18] 武维华 (2003). 植物生理学. 北京: 科学出版社. pp. 105-111.
[19] 张亮, 张红香, 周道玮 (2018). 中国与国外饲草育种研究现状分析. 土壤与作物 7, 324-330.
[20] 张艳, 满为群, 南相日, 李柱刚 (2015). 高粱C4pepc基因转入大豆可改善大豆光合特性. 分子植物育种 13, 294-300.
[21] 周倩 (2020). AtNRPCs基因调控拟南芥光合效能及紫花苜蓿MsNRPCs的利用研究. 金华: 浙江师范大学. pp. 1-71.
[22] 宗毓铮 (2013). 大气二氧化碳浓度升高对玉米幼苗碳氮资源分配的影响. 博士论文. 咸阳: 中国科学院研究生院(教育部水土保持与生态环境研究中心). pp. 1-93.
[23] Anten NPR, Schieving F, Werger MJA (1995). Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono- and dicotyledonous species. Oecologia 101, 504-513.
[24] Atkins CA, Smith PMC (2007). Translocation in legumes: assimilates, nutrients, and signaling molecules. Plant Phy- siol 144, 550-561.
[25] Ayre BG (2011). Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol Plant 4, 377-394.
[26] Baier MC, Barsch A, Ku?ster H, Hohnjec N (2007). Antisense repression of the Medicago truncatula nodule- enhanced sucrose synthase leads to a handicapped nitro- gen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome. Plant Physiol 145, 1600-1618.
[27] Benedito VA, Li HQ, Dai XB, Wandrey M, He J, Kaundal R, Torres-Jerez I, Gomez SK, Harrison MJ, Tang YH, Zhao PX, Udvardi MK (2010). Genomic inventory and transcriptional analysis of Medicago truncatula transporters. Plant Physiol 152, 1716-1730.
[28] Brown SM, Oparka KJ, Sprent JI, Walsh KB (1995). Symplastic transport in soybean root nodules. Soil Biol Biochem 27, 387-399.
[29] Carter AM, Tegeder M (2016). Increasing nitrogen fixation and seed development in soybean requires complex adjustments of nodule nitrogen metabolism and partitioning processes. Curr Biol 26, 2044-2051.
[30] Chen KE, Chen HY, Tseng CS, Tsay YF (2020). Improving nitrogen use efficiency by manipulating nitrate remobilization in plants. Nat Plants 6, 1126-1135.
[31] Collier R, Tegeder M (2012). Soybean ureide transporters play a critical role in nodule development, function and nitrogen export. Plant J 72, 355-367.
[32] Complainville A, Brocard L, Roberts I, Dax E, Sever N, Sauer N, Kondorosi A, Wolf S, Oparka K, Crespi M (2003). Nodule initiation involves the creation of a new symplasmic field in specific root cells of Medicago species. Plant Cell 15, 2778-2791.
[33] Dalal J, Lopez H, Vasani NB, Hu ZH, Swift JE, Yalamanchili R, Dvora M, Lin XL, Xie DY, Qu RD, Sederoff HW (2015). A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa. Biotechnol Biofuels 8, 175.
[34] Evans JR, Clarke V (2019). The nitrogen cost of photosynthesis. J Exp Bot 70, 7-15.
[35] Fukayama H, Hatch MD, Tamai T, Tsuchida H, Sudoh S, Furbank RT, Miyao M (2003). Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynth Res 77, 227-239.
[36] Ge ZM, Zhou X, Kellom?ki S, Biasi C, Wang KY, Peltola H, Martikainen PJ (2012). Carbon assimilation and allocation (13C labeling) in a boreal perennial grass (Phalaris arundinacea) subjected to elevated temperature and CO2 through a growing season. Environ Exp Bot 75, 150-158.
[37] Gebril S, Seger M, Villanueva FM, Ortega JL, Bagga S, Sengupta-Gopalan C (2015). Transgenic alfalfa (Medicago sativa) with increased sucrose phosphate synthase activity shows enhanced growth when grown under N2- fixing conditions. Planta 242, 1009-1024.
[38] Hagemann M, Bauwe H (2016). Photorespiration and the potential to improve photosynthesis. Curr Opin Chem Biol 35, 109-116.
[39] H?usler RE, Hirsch HJ, Kreuzaler F, Peterh?nsel C (2002). Overexpression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3-photosynthesis. J Exp Bot 53, 591-607.
[40] H?usler RE, Rademacher T, Li J, Lipka V, Fischer KL, Schubert S, Kreuzaler F, Hirsch HJ (2001). Single and double overexpression of C4-cycle genes had differential effects on the pattern of endogenous enzymes, attenuation of photorespiration and on contents of UV protectants in transgenic potato and tobacco plants. J Exp Bot 52, 1785-1803.
[41] Heichel GH, Barnes DK, Vance CP (1981). Nitrogen fixation of alfalfa in the seeding year. Crop Sci 21, 330-335.
[42] Horst I, Welham T, Kelly S, Kaneko T, Sato S, Tabata S, Parniske M, Wang TL (2007). TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase. Plant Physiol 144, 806-820.
[43] Ji BH, Zhu SQ, Jiao DM (2004). A limited photosynthetic C4-microcycle and its physiological function in transgenic rice plant expressing the maize PEPC gene. Acta Bot Sin 46, 542-551.
[44] Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, St?bler N, Sch?nfeld B, Kreuzaler F, Peterh?nsel C (2007). Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25, 593-599.
[45] Ladha JK, Peoples MB, Reddy PM, Biswas JC, Bennett A, Jat ML, Krupnik TJ (2022). Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. Field Crop Res 283, 108541.
[46] Lalonde S, Wipf D, Frommer WB (2004). Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol 55, 341-372.
[47] Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996). The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47, 569-593.
[48] Long SP, Marshall-Colon A, Zhu XG (2015). Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161, 56-66.
[49] Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010). Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105, 1141-1157.
[50] Minogue CE, Marx H, Jayaraman D, Richards AL, Kwiecien NW, Sihapirani AF, Rajasekar S, Maeda J, Garcia K, Del Valle-Echevarria AR, Volkening J, Westphall MS, Roy S, Sussman MR, Ané JM, Coon JJ (2016). A proteomic atlas of the legume, M. truncatula, and its nitrogen fixing endosymbiont, S. meliloti. Nat Biotechnol 34, 1198-1205.
[51] Mitsch MJ, diCenzo GC, Cowie A, Finan TM (2018). Succinate transport is not essential for symbiotic nitrogen fixation by Sinorhizobium meliloti or Rhizobium leguminosarum. Appl Environ Microbiol 84, e01561-17.
[52] Nag P, Shriti S, Das S (2020). Microbiological strategies for enhancing biological nitrogen fixation in nonlegumes. J Appl Microbiol 129, 186-198.
[53] N?lke G, Houdelet M, Kreuzaler F, Peterh?nsel C, Schillberg S (2014). The expression of a recombinant glycolate dehydrogenase polyprotein in potato (Solanum tuberosum) plastids strongly enhances photosynthesis and tuber yield. Plant Biotechnol J 12, 734-742.
[54] Oldroyd GED, Downie JA (2008). Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59, 519-546.
[55] Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, Moore TA, Moroney J, Niyogi KK, Parry MAJ, Peralta-Yahya PP, Prince RC, Redding KE, Spalding MH, van Wijk KJ, Vermaas WFJ, von Caemmerer S, Weber APM, Yeates TO, Yuan JS, Zhu XG (2015). Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 112, 8529-8536.
[56] Pe?lissier HC, Frerich A, Desimone M, Schumacher K, Tegeder M (2004). PvUPS1, an allantoin transporter in nodulated roots of French bean. Plant Physiol 134, 664-675.
[57] Plett D, Toubia J, Garnett T, Tester M, Kaiser BN, Baumann U (2010). Dichotomy in the NRT gene families of dicots and grass species. PLoS One 5, e15289.
[58] Qin N, Xu WG, Hu L, Li Y, Wang HW, Qi XL, Fang YH, Hua X (2016). Drought tolerance and proteomics studies of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene. Protoplasma 253, 1503-1512.
[59] Raines CA (2006). Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. Plant Cell Environ 29, 331-339.
[60] Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pislariu CI, Frugoli J, Dickstein R, Udvardi MK (2020). Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 32, 15-41.
[61] Ruehr NK, Offermann CA, Gessler A, Winkler JB, Ferrio JP, Buchmann N, Barnard RL (2009). Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol 184, 950-961.
[62] Seger M, Ortega JL, Bagga S, Gopalan CS (2009). Repercussion of mesophyll-specific overexpression of a soybean cytosolic glutamine synthetase gene in alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabacum L.). Plant Sci 176, 119-129.
[63] Shen BR, Wang LM, Lin XL, Yao Z, Xu HW, Zhu CH, Teng HY, Cui LL, Liu EE, Zhang JJ, He ZH, Peng XX (2019). Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice. Mol Plant 12, 199-214.
[64] Singer SD, Hannoufa A, Acharya S (2018). Molecular improvement of alfalfa for enhanced productivity and adaptability in a changing environment. Plant Cell Environ 41, 1955-1971.
[65] Smith PMC, Atkins CA (2002). Purine biosynthesis. Big in cell division, even bigger in nitrogen assimilation. Plant Physiol 128, 793-802.
[66] Smith PMC, Winter H, Storer PJ, Bussell JD, Schuller KA, Atkins CA (2002). Effect of short-term N2 deficiency on expression of the ureide pathway in cowpea root nodules. Plant Physiol 129, 1216-1221.
[67] South PF, Cavanagh AP, Liu HW, Ort DR (2019). Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science 363, eaat9077.
[68] Taiz L, Zeiger E, M?ller IM, Murphy A (2014). Plant Physiology and Development, 6th edn. Sunderland: Sinauer Associates Incorporated. pp. 1-888.
[69] Takeuchi Y, Akagi H, Kamasawa N, Osumi M, Honda H (2000). Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta 211, 265-274.
[70] Todd CD, Tipton PA, Blevins DG, Piedras P, Pineda M, Polacco JC (2006). Update on ureide degradation in legumes. J Exp Bot 57, 5-12.
[71] Udvardi M, Poole PS (2013). Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64, 781-805.
[72] Walker BJ, Van Loocke A, Bernacchi CJ, Ort DR (2016). The costs of photorespiration to food production now and in the future. Annu Rev Plant Biol 67, 107-129.
[73] Wang Q, Huang YG, Ren ZJ, Zhang XX, Ren J, Su JQ, Zhang C, Tian J, Yu YJ, Gao GF, Li LG, Kong ZS (2020). Transfer cells mediate nitrate uptake to control root nodule symbiosis. Nat Plants 6, 800-808.
[74] Werner AK, Witte CP (2011). The biochemistry of nitrogen mobilization: purine ring catabolism. Trends Plant Sci 16, 381-387.
[75] Xiao QY, Chen Y, Liu CW, Robson F, Roy S, Cheng XF, Wen JQ, Mysore K, Miller AJ, Murray JD (2021). MtNPF6.5 mediates chloride uptake and nitrate preference in Medicago roots. EMBO J 40, e106847.
[76] Xu GH, Fan XR, Miller AJ (2012). Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63, 153-182.
[77] Yadav S, Mishra A (2020). Ectopic expression of C4 photosynthetic pathway genes improves carbon assimilation and alleviate stress tolerance for future climate change. Physiol Mol Biol Plants 26, 195-209.
[78] Yang YH, Fang JY, Ji CJ, Han WX (2009). Above- and belowground biomass allocation in Tibetan grasslands. J Veg Sci 20, 177-184.
[79] Zhu XG, Long SP, Ort DR (2010). Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61, 235-261.
Outlines

/