EXPERIMENTAL COMMUNICATIONS

Comparative Analyses on the Chloroplast Genome of Three Sympatric Atraphaxis Species

Expand
  • Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Sciences and Technology, Xinjiang University, Urumqi 830017, China

Received date: 2022-04-08

  Accepted date: 2022-09-19

  Online published: 2022-09-27

Abstract

Atraphaxis spinosa, A. jrtyschensis, and A. decipiens are three species with sympatric distribution in northern Xinjiang, China. In this study, their chloroplast genomes were assembled and annotated with the second-generation high-throughput sequencing technology (NGS). We compared the nucleotide sequences of the chloroplast (cp) genomes of these three Atraphaxis species and carried out the phylogenetic analysis. The results showed that the cp genomes of the three species ranged from 164 106 bp to 164 216 bp, similar to that of other green plants, all including a pair of inverted repeats separated by a large single-copy and a small single-copy region. We detected a total of 48-49 tandem repeats and 59-63 simple sequence repeats (SSRs) from the three cp genomes. The mean value of nucleotide diversity of the three species was 0.000 96, the average score of Ka/Ks ratio was 0.030 3, and the mean genetic distance value was 0.001 0. A comparative analysis showed that the coding regions were more conserved than the non-coding regions. The phylogenetic analysis showed that the three species were closely related. This study reveals the phylogenetic relationships among the three sympatric distribution species of Atraphaxis based on complete chloroplast genomes, and the phylogenetic position of Atraphaxis in the family Polygonaceae. This work may provide a reference for taxonomic, systematic and biogeographical studies of Atraphaxis.

Cite this article

Zhenzhou Chu, Gulbar Yisilam, Zezhong Qu, Xinmin Tian . Comparative Analyses on the Chloroplast Genome of Three Sympatric Atraphaxis Species[J]. Chinese Bulletin of Botany, 2023 , 58(3) : 417 -432 . DOI: 10.11983/CBB22065

References

[1] 艾对元 (2008). 基因组中重复序列的意义. 生命的化学 28, 343-345.
[2] 李安仁, 高作经, 毛祖美, 刘玉兰 (1998). 中国植物志, 第25卷第1分册. 北京: 科学出版社. pp. 133-141.
[3] 李巧丽, 延娜, 宋琼, 郭军战 (2018). 鲁桑叶绿体基因组序列及特征分析. 植物学报 53, 94-103.
[4] 马克平 (1993). 试论生物多样性的概念. 生物多样性 1, 20-22.
[5] 王成龙 (2018). 野生荞麦叶绿体基因组比较分析及荞麦属植物系统进化研究. 博士论文. 雅安: 四川农业大学. pp. 52-53.
[6] 王继玥, 白禹, 石登红, 刘燕 (2021). 桑科植物叶绿体基因组研究进展. 北方园艺 (8), 124-130.
[7] 徐惠梅, 杨惠芳, 靳春霞 (2008). 沙木蓼和杨柴治沙造林试验. 现代农业科技 (19), 39, 41.
[8] 杨昌友 (1984). 新疆木蓼属新种. 植物研究 4(2), 150-151.
[9] 杨梦婷, 黄洲, 干建平, 徐君驰, 庞基良 (2019). SSR分子标记的研究进展. 杭州师范大学学报(自然科学版) 18, 429-436.
[10] Amiryousefi A, Hyv?nen J, Poczai P (2018). IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34, 3030-3031.
[11] Bao BJ, Li AJ (1993). A study of the genus Atraphaxis in China and the system of Atraphaxideae (Polygonaceae). J Syst Evol 31, 127-139.
[12] Behura SK, Severson DW (2013). Codon usage bias: causative factors, quantification methods and genome- wide patterns: with emphasis on insect genomes. Biol Rev 88, 49-61.
[13] Burke JM, Sanchez A, Kron K, Luckow M (2010). Placing the woody tropical genera of Polygonaceae: a hypothesis of character evolution and phylogeny. Am J Bot 97, 1377-1390.
[14] Cosner ME, Raubeson LA, Jansen RK (2004). Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evolut Biol 4, 27.
[15] Curci PL, De Paola D, Danzi D, Vendramin GG, Sonnante G (2015). Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae. PLoS One 10, e0120589.
[16] Daniell H, Lin CS, Yu M, Chang WJ (2016). Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17, 134.
[17] Dierckxsens N, Mardulyn P, Smits G (2017). NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45, e18.
[18] Doyle JJ, Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19, 11-15.
[19] Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004). VISTA: computational tools for comparative genomics. Nucleic Acids Res 32, W273-W279.
[20] Gandhi SG, Awasthi P, Bedi YS (2010). Analysis of SSR dynamics in chloroplast genomes of Brassicaceae family. Bioinformation 5, 16-20.
[21] Gao FL, Chen CJ, Arab DA, Du ZG, He YH, Ho SYW (2019). EasyCodeML: a visual tool for analysis of selection using CodeML. Ecol Evol 9, 3891-3898.
[22] Gao XY, Zhang X, Meng HH, Li J, Zhang D, Liu CN (2018). Comparative chloroplast genomes of Paris sect. Marmorata: insights into repeat regions and evolutionary implications. BMC Genomics 19, 878.
[23] Greiner S, Lehwark P, Bock R (2019). OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res 47, W59-W64.
[24] Hershberg R, Petrov DA (2008). Selection on codon bias. Annu Rev Genet 42, 287-299.
[25] Jansen RK, Wojciechowski MF, Sanniyasi E, Lee SB, Daniell S (2008). Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12and clpP intron losses among legumes (Leguminosae). Mol Phylogenet Evol 48, 1204-1217.
[26] Jia J, Xue QZ (2009). Codon usage biases of transposable elements and host nuclear genes in Arabidopsis thaliana and Oryza sativa. Genom Proteomics Bioinf 7, 175-184.
[27] Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haesele A, Jermiin LS (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14, 587-589.
[28] Katoh K, Rozewicki J, Yamada KD (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20, 1160-1166.
[29] Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649.
[30] Khan A, Asaf S, Khan AL, Al-Harrasi A, Al-Sudairy O, AbdulKareem NM, Khan A, Shehzad T, Alsaady N, Al-Lawati A, Al-Rawahi A, Shinwari ZK (2019). First complete chloroplast genomics and comparative phylogenetic analysis of Commiphora gileadensis and C. foliacea: myrrh producing trees. PLoS One 14, e0208511.
[31] Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001). REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29, 4633-4642.
[32] Li L, Hu YF, He M, Zhang B, Wu W, Cai PM, Huo D, Hong YC (2021). Comparative chloroplast genomes: insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia. BMC Genomics 22, 138.
[33] Li X, Li YF, Zang MY, Li MZ, Fang YM (2018). Complete chloroplast genome sequence and phylogenetic analysis of Quercus acutissima. Int J Mol Sci 19, 2443.
[34] Librado P, Rozas J (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452.
[35] Lyu XL, Liu Y (2020). Nonoptimal codon usage is critical for protein structure and function of the master general amino acid control regulator CPC-1. mBio 11, e02605-20.
[36] Marais G, Mouchiroud D, Duret L (2001). Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc Natl Acad Sci USA 98, 5688-5692.
[37] Qian J, Song JY, Gao HH, Zhu YJ, Xu J, Pang XH, Yao H, Sun C, Li XE, Li CY, Liu JY, Xu HB, Chen SL (2013). The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS One 8, e57607.
[38] Saski C, Lee SB, Daniell H, Wood TC, Tomkins J, Kim HG, Jansen RK (2005). Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. Plant Mol Biol 59, 309-322.
[39] Sun YX, Zhang ML (2012). Molecular phylogeny of tribe Atraphaxideae (Polygonaceae) evidenced from five cpDNA genes. J Arid Land 4, 180-190.
[40] Tamura K, Stecher G, Kumar S (2021). MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38, 3022-3027.
[41] Thiel T, Michalek W, Varshney R, Graner A (2003). Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106, 411-422.
[42] Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S (2017). GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res 45, W6-W11.
[43] Wang QY, Yuan ZY, Zhang Y, Mamtimin S, Tian XM (2018a). The complete chloroplast genome of Atraphaxis jrtyschensis (Polygonaceae), an endemic and endangered desert shrub to Xinjiang, China. Mitochondrial DNA Part B 3, 1104-1105.
[44] Wang WC, Chen SY, Zhang XZ (2018b). Whole-genome comparison reveals divergent IR borders and mutation hotspots in chloroplast genomes of herbaceous bamboos (Bambusoideae: Olyreae). Molecules 23, 1537.
[45] Wang XH (2018). Phytochemical Investigations of Atraphaxis spinosa and Camphorosma lessingii Litv. Master's thesis. Tianjin: Tianjin University. pp. 41-66.
[46] Wanga VO, Dong X, Oulo MA, Mkala EM, Yang JX, Onjalalaina GE, Gichua MK, Kirika PM, Gituru RW, Hu GW, Wang QF (2021). Complete chloroplast genomes of Acanthochlamys bracteata (China) and Xerophyta (Africa) (Velloziaceae): comparative genomics and phylogenomic placement. Front Plant Sci 12, 691833.
[47] Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D (2011). The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76, 273-297.
[48] Wu S, Chen JY, Li Y, Liu A, Li A, Yin M, Shrestha N, Liu JQ, Ren GP (2021). Extensive genomic rearrangements mediated by repetitive sequences in plastomes of Medicago and its relatives. BMC Plant Biol 21, 421.
[49] Xie DF, Yu Y, Deng YQ, Li J, Liu HY, Zhou SD, He XJ (2018). Comparative analysis of the chloroplast genomes of the Chinese endemic genus Urophysa and their contribution to chloroplast phylogeny and adaptive evolution. Int J Mol Sci 19, 1847.
[50] Xue JH, Wang S, Zhou SL (2012). Polymorphic chloroplast microsatellite loci in Nelumbo (Nelumbonaceae). Am J Bot 99, e240-e244.
[51] Yang BB, Li LD, Liu JQ, Zhang LS (2021). Plastome and phylogenetic relationship of the woody buckwheat Fagopyrum tibeticum in the Qinghai-Tibet Plateau. Plant Diversity 43, 198-205.
[52] Yang Y, Dang YY, Li Q, Lu JJ, Li XW, Wang YT (2014). Complete chloroplast genome sequence of poisonous and medicinal plant Datura stramonium: organizations and implications for genetic engineering. PLoS One 9, e110656.
[53] Yang ZH (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24, 1586-1591.
[54] Yurtseva OV, Kuznetsova OI, Mavrodieva ME, Mavrodiev EV (2016). What is Atraphaxis L. (Polygonaceae, Polygoneae): cryptic taxa and resolved taxonomic complexity instead of the formal lumping and the lack of morphological synapomorphies. Peer J 4, e1977.
[55] Zhang D, Gao FL, Jakovli? I, Zou H, Zhang J, Li WX, Wang GT (2020). PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 20, 348-355.
[56] Zhou JH, Ding YZ, He Y, Chu YF, Zhao P, Ma LY, Wang XJ, Li XR, Liu YS (2014). The effect of multiple evolutionary selections on synonymous codon usage of genes in the Mycoplasma bovis genome. PLoS One 9, e108949.
[57] Zhou T, Chen C, Wei Y, Chang YX, Bai GQ, Li ZH, Kanwal N, Zhao GF (2016). Comparative transcriptome and chloroplast genome analyses of two related Dipteronia species. Front Plant Sci 7, 1512.
Outlines

/