EXPERIMENTAL COMMUNICATIONS

Establishment of a Comprehensive Evaluation System for Aluminum Tolerance in Tomato Seedlings Based on Principal Component Analysis-Clustering Analysis-Stepwise Regression Analysis

Expand
  • 1College of Chemistry and Life Sciences, Zhejiang Normal University/Botany Laboratory, Jinhua 321004, China
    2College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
    3Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    4Lishui Vocational and Technical College, Lishui 323000, China

Received date: 2022-04-08

  Revised date: 2022-05-12

  Online published: 2022-05-12

Abstract

Aluminum toxicity is one of the major factors limiting crop production in acid soils. Tomato is a dominant economic crop in acid soil and different varieties of tomato have different responses to aluminum stress. Therefore, screening aluminum tolerant seedling is of great significance for tomato production and research. In this study, 10 tomato varieties were used as materials, which were cultured indoor in pots containing soil, treated with 1 000 µmol∙L-1 AlCl3·6H2O. 16 morphological, physiological, biochemical or photosynthetic indicators reflecting the growth of plants under aluminum stress were determined. Through principal component analysis, 16 indicators of tomato seedlings under aluminum stress were converted into 5 independent comprehensive indicators, with a cumulative contribution rate of 90.779%. Based on the systematic cluster analysis of aluminum resistance value (A), the test germplasms were divided into five levels, category I is a highly aluminum-tolerant variety, Qianxi, and category V was a highly aluminum-intolerant variety, Puluowangsi. According to the multiple linear regression analysis, 4 of the 16 indicators were found to be significantly correlated with the A value (P<0.01): malondialdehyde content (X3), net photosynthetic rate (X6), leaf area (X10) and dry weight of underground (X15), with the following evaluation equation: y=0.046+0.405X6+0.515X10-0.207X15+0.028X3 (R2=0.997). The evaluation equation can be used to judge the aluminum toxicity resistance characteristics of different tomato varieties in seedling stage, which made the identification of tomato aluminum tolerance quick and simplified.

Cite this article

Guo Shuya, Ai Jinxiang, Chen Hongyu, Shao Yeyao, Wang Yan, Wang Qian, Ye Yitong, Zhang Yating, Ding Zhexiao, Wu Haochen, Wu Yuhuan, Zhang Jianxin, Rao Mide, Liu Peng . Establishment of a Comprehensive Evaluation System for Aluminum Tolerance in Tomato Seedlings Based on Principal Component Analysis-Clustering Analysis-Stepwise Regression Analysis[J]. Chinese Bulletin of Botany, 2022 , 57(4) : 479 -489 . DOI: 10.11983/CBB22066

References

[1] 宝力格, 陆平, 史梦莎, 许月, 刘敏轩 (2020). 中国高粱地方种质芽期苗期耐盐性筛选及鉴定. 作物学报 46, 734-744.
[2] 鲍士旦 (2000). 土壤农化分析(第3版). 北京: 中国农业出版社. pp. 39-114.
[3] 常宝亮, 陈俊杰, 钱萍, 沈志国, 王永江, 金奇江, 王彦杰, 徐迎春 (2021). 基于层次分析(AHP)-灰色关联分析的盆栽荷花早花品种的综合评价与筛选. 植物资源与环境学报 30 (3), 54-60.
[4] 陈小姝, 赵跃, 蒋春姬, 刘海龙, 吕永超, 宁洽, 张鹤, 王绍伦, 高华援 (2020). 花生品种幼苗耐低温鉴定的生理生化指标筛选. 中国油料作物学报 42, 649-657.
[5] 崔翠, 程闯, 赵愉风, 郜欢欢, 王瑞莉, 王刘艳, 周清元 (2019). 52份豌豆种质萌发期耐铝毒性的综合评价与筛选. 作物学报 45, 798-805.
[6] 高小凤, 郭添香, 唐新莲, 黎晓峰 (2016). 铝胁迫诱导根系分泌异羟肟酸及其对玉米抵御铝毒害的作用. 中国农业科学 49, 2063-2071.
[7] 贾邱颖, 吴晓蕾, 冀胜鑫, 褚新培, 赵峰, 宫彬彬, 李敬蕊, 高洪波 (2021). γ-氨基丁酸对番茄嫁接苗耐盐性的生理调控效应. 植物营养与肥料学报 27, 122-134.
[8] 李彩斌, 郭华春 (2017). 马铃薯品种耐弱光性评价及其指标的筛选. 中国农业科学 50, 3461-3472.
[9] 李灿东 (2020). 大豆种质资源耐密性评价及鉴定指标筛选. 大豆科学 39, 688-695.
[10] 李小方, 张志良 (2016). 植物生理学实验指导(第5版). 北京: 高等教育出版社. pp. 200-259.
[11] 刘勋, 张娇, 沈昱辰, 谢德斌, 李宏利, 李春明, 易小平, 赵勇, 唐道彬, 吕长文, 王季春 (2019). 基于光合系统参数建立马铃薯耐荫性综合评价体系. 植物学报 54, 360-370.
[12] 罗俊杰, 欧巧明, 叶春雷, 王方, 王镛臻, 陈玉梁 (2014). 重要胡麻栽培品种的抗旱性综合评价及指标筛选. 作物学报 40, 1259-1273.
[13] 潘晓雪, 胡明瑜, 王忠伟, 吴红, 雷开荣 (2021). 不同水稻种质资源重要农艺性状与发芽期耐寒性鉴定研究. 作物杂志 (1), 47-53.
[14] 彭玉梅, 石国亮, 崔辉梅 (2014). 加工番茄幼苗期耐盐生理指标筛选及耐盐性综合评价. 干旱地区农业研究 32(5), 61-66.
[15] 施海涛 (2016). 植物逆境生理学实验指导. 北京: 科学出版社. pp. 1-80.
[16] 宋静爽, 王静, 刘周斌, 吕俊恒, 吴永红, 欧立军, 邹学校 (2020). 辣椒苗期对低温胁迫的响应及耐冷评价体系的建立. 分子植物育种 18, 7537-7546.
[17] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生 (2021). 饲用大豆品种耐荫性鉴定指标筛选及综合评价. 作物学报 47, 1741-1752.
[18] 王倩, 崔翠, 叶桑, 崔明圣, 赵愉风, 林呐, 唐章林, 李加纳, 周清元 (2018). 甘蓝型油菜种子萌发期耐苯磺隆种质筛选与综合评价. 作物学报 44, 1169-1184.
[19] 熊洁, 丁戈, 陈伦林, 李书宇, 邹小云, 黄杨, 宋来强 (2021). 不同基因型油菜耐铝性及其根系形态对铝胁迫的响应. 中国油料作物学报 43, 673-682.
[20] 徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜 (2020). 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选. 作物学报 46, 448-461.
[21] 杨佳敏, 贺希格都楞, 万家悦, 丁艳菲, 王飞娟, 朱诚 (2021). 镉污染地区番茄品种的筛选及其抗氧化能力. 生物工程学报 37, 242-252.
[22] 杨铁钊, 杨志晓, 聂红资, 张小全, 刘友杰, 尚晓颍, 任周营, 范进华 (2009). 富钾基因型烤烟的钾积累及根系生理特性. 作物学报 35, 535-540.
[23] 原静云, 原让花, 李贞霞, 王晓玲 (2016). 我国番茄种质资源研究进展. 种业导刊 (4), 9-14.
[24] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋 (2021). 花生耐冷综合评价体系构建及耐冷种质筛选. 作物学报 47, 1753-1767.
[25] 张玮, 易拓, 唐维, 宋勇 (2019). 木薯耐寒性种质资源及其鉴定指标的筛选与综合评价. 热带作物学报 40, 1-10.
[26] 张永福, 徐仕琴, 杨砚斌, 栾文杰, 莫丽玲, 韩丽 (2020). 二十七份葡萄种质根系对铝胁迫的生理响应及耐铝基因型筛选. 北方园艺 (13), 15-24.
[27] 周亚峰, 许彦宾, 王艳玲, 李琼, 胡建斌 (2017). 基于主成分-聚类分析构建甜瓜幼苗耐冷性综合评价体系. 植物学报 52, 520-529.
[28] de Bauw P, Shimamura E, Rakotoson T, Andriamananjara A, Verbeeck M, Merckx R, Smolders E (2021). Farm yard manure application mitigates aluminium toxicity and phosphorus deficiency for different upland rice genotypes. J Agron Crop Sci 207, 148-162.
[29] He H, Li Y, He LF (2019). Aluminum toxicity and tolerance in Solanaceae plants. S Afr J Bot 123, 23-29.
[30] Jin JF, Wang ZQ, He QY, Wang JY, Li PF, Xu JM, Zheng SJ, Fan W, Yang JL (2020). Genome-wide identification and expression analysis of the NAC transcription factor family in tomato (Solanum lycopersicum) during aluminum stress. BMC Genomics 21, 288.
[31] Jin L, Zhao LP, Wang YL, Zhou R, Song LX, Xu LP, Cui X, Li R, Yu WG, Zhao TM (2019). Genetic diversity of 324 cultivated tomato germplasm resources using agronomic traits and InDel markers. Euphytica 215, 69.
[32] Rady MM (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci Hortic 129, 232-237.
[33] Shetty R, Prakash NB (2020). Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Sci Rep 10, 12249.
[34] Shoroardi M, Mortuza MG, Islam MM, Samiha T (2017). Phenotypic screening and molecular characterization of 10 rice (Oryza sativa) landraces for cold tolerance. J Environ Sci Nat Res 10, 85-91.
[35] Yamamoto Y (2019). Aluminum toxicity in plant cells: mechanisms of cell death and inhibition of cell elongation. Soil Sci Plant Nutr 65, 41-55.
[36] Yu R, Wang G, Yu X, Li L, Li C, Song Y, Xu Z, Zhang J, Guan C (2021). Assessing alfalfa (Medicago sativa L.) tolerance to salinity at seedling stage and screening of the salinity tolerance traits. Plant Biol 23, 664-674.
[37] Zou GH, Liu HY, Mei HW, Liu GL, Yu XQ, Li MS, Wu JH, Chen L, Luo LJ (2007). Screening for drought resistance of rice recombinant inbred populations in the field. J Integr Plant Biol 49, 1508-1516.
Outlines

/