EXPERIMENTAL COMMUNICATIONS

Effects of Exogenous Melatonin on Physiological Response and DNA Damage of Ardisia mamillata and A. crenata Under Lead Stress

Expand
  • 1Botany Laboratory, Zhejiang Normal University, Jinhua 321004, China
    2College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
    3Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China

Received date: 2021-11-10

  Accepted date: 2022-02-07

  Online published: 2022-02-07

Abstract

Lead (Pb) is a major abiotic constraint affecting plant growth. To compare the anti-lead ability of two Ardisiaspecies and investigate the physiological responses and DNA damage to the treatments of exogenous melatonin (MT) under lead stress, hydroponic experiment was carried out with 2-year-old seedlings of A. mamillata and A. crenata. The results showed that with the increasing of the lead stress concentration in the same period of time, the three antioxidant enzyme activities, proline (Pro) and soluble protein (SP) contents of the A. mamillata and A. crenata were all increased first and then decreased, while malondialdehyde (MDA) content decreased at first and then increased, the root tip callosin content continues to rise, DNA damage in roots was increased. After the application of appropriate concentrations of exogenous MT, the activities of antioxidant enzymes in both plants were effectively enhanced and reached a maximum at 100 µmol∙L-1 MT treatment under different concentrations of Pb, and the contents of Pro and SP were significantly increased. However, the MDA content decreased significantly at first and then increased slowly. The root tip callosin content continues to increase and the root DNA damage was improved. With the increasing of MT concentration, the alleviating effect of melatonin on A. mamillata and A. crenata gradually weakened. A. crenata is more resistant to lead stress and its physiological response is more stable than A. mamillata. Exogenous application of MT can effectively alleviate the toxic effect of lead stress on A. mamillata and A. crenata (relief effect of A. crenata > A. mamillata), and enhance its tolerance to lead toxicity, among which 100 µmol∙L-1 MT treatment has the best mitigation effect. We revealed the superiority of lead resistance of A. mamillata and A. crenata, and the alleviating effect of exogenous MT on lead poisoning, thus providing a theoretical reference for the study of lead resistance of Ardisia.

Cite this article

Jinxiang Ai, Jiayi Song, Zhenan Yan, Zhichao Wang, Wenqian Chen, Yuhuan Wu, Yanyan Wang, Leilei Pan, Yutao Xu, Peng Liu . Effects of Exogenous Melatonin on Physiological Response and DNA Damage of Ardisia mamillata and A. crenata Under Lead Stress[J]. Chinese Bulletin of Botany, 2022 , 57(2) : 171 -181 . DOI: 10.11983/CBB21191

References

[1] 安婷婷, 黄帝, 王浩, 张一, 陈应龙 (2021). 植物响应镉胁迫的生理生化机制研究进展. 植物学报 56, 347-362.
[2] 陈旋, 胡颖, 孙明升, 贾婕, 杨章旗 (2021). 外源调节物质对铅胁迫下格木幼苗生理特性的影响. 林业科学 57(2), 39- 48.
[3] 顾红雅, 左建儒, 漆小泉, 杨淑华, 陈之端, 钱前, 林荣呈, 王雷, 萧浪涛, 王小菁, 陈凡, 姜里文, 白永飞, 种康, 王台 (2021). 2020年中国植物科学若干领域重要研究进展. 植物学报 56, 119-133.
[4] 郭炜 (2008). 紫外辐照导致植物细胞DNA损伤的彗星电泳检测及生理指标的测定. 硕士论文. 济南: 山东大学. pp. 18-20.
[5] 韩航, 陈顺钰, 薛凌云, 侯晓龙, 蔡丽平, 刘爱琴, 周垂帆 (2018). 铅胁迫对金丝草生长及生理生化的影响. 草业学报 27(4), 131-138.
[6] 何玲莉, 沈虹, 王燕, 王娟娟, 龚义勤, 徐良, 柳李旺 (2015). 铅胁迫下萝卜基因组DNA甲基化分析. 核农学报 29, 1278- 1284.
[7] 李春燕, 王进鑫, 王敏, 陈科皓, 王榆鑫, 宋清玉 (2016). 铅胁迫下干旱对国槐和紫穗槐幼苗抗氧化酶活性的影响. 干旱地区农业研究 34(3), 174-178.
[8] 李冬, 王艳芳, 王悦华, 温烜琳, 蔡慧英, 郑晓蕾, 陈彤彤, 刘领 (2019). 外源褪黑素对镉胁迫下豌豆种子萌发、幼苗抗性生理及镉含量的影响. 核农学报 33, 2271-2279.
[9] 李合生 (2000). 植物生理生化实验原理和技术. 北京: 高等教育出版社. pp. 164-169.
[10] 凌育赵, 刘经亮, 吴晓天, 刘佩珊 (2019). 虎舌红根茎三萜皂苷类成分的研究. 中成药 41, 2139-2144.
[11] 刘灿玉, 王允, 张逸, 曹逼力, 徐坤 (2015). 铅胁迫对姜叶片活性氧代谢的影响. 园艺学报 42, 2215-2222.
[12] 刘仕翔, 黄益宗, 罗泽娇, 黄永春, 杨秀文 (2017). 褪黑素对水稻镉积累及其化学结合形态的影响. 应用生态学报 28, 1588-1594.
[13] 骆永明, 滕应 (2018). 我国土壤污染的区域差异与分区治理修复策略. 中国科学院院刊 33, 145-152.
[14] 吕潇, 王聿双, 张晓倩, 刘海学 (2016). 不同浓度铅胁迫对向日葵幼苗蛋白质结构和表达的影响. 华北农学报 31(2), 60-64.
[15] 齐晓媛, 王文莉, 胡少卿, 刘梦雨, 郑成淑, 孙宪芝 (2021). 外源褪黑素对高温胁迫下菊花光合和生理特性的影响. 应用生态学报 32, 2496-2504.
[16] 邱丽丽, 赵琪, 张玉红, 戴绍军 (2017). 植物质膜蛋白质组的逆境应答研究进展. 植物学报 52, 128-147.
[17] 孙清斌, 沈仁芳, 尹春芹, 赵学强 (2016). 铝胁迫下胡枝子根尖胼胝质形成规律及影响因素. 生态学报 36, 1073-1082.
[18] 王芳, 李永生, 王汉宁, 彭云玲, 方永丰, 王威, 马原忠 (2016). 钙对铅胁迫下玉米幼苗生长及生理特性的影响. 水土保持学报 30(3), 202-207.
[19] 武亮, 戚益军 (2020). 小RNA, 大本领: 22 nt siRNAs在植物适应逆境中的重要作用. 植物学报 55, 270-273.
[20] 徐向东, 孙艳, 郭晓芹, 孙波, 张坚 (2011). 高温胁迫下外源褪黑素对黄瓜幼苗光合作用及叶绿素荧光的影响. 核农学报 25, 179-184.
[21] 叶江华, 贾小丽, 陈晓婷, 林舜贤, 李远华, 王飞权, 胡永乐, 王海斌 (2017). 铅胁迫下不同茶树的生理响应及其亚细胞水平铅分布特性分析. 中国农业科技导报 19(11), 92-99.
[22] 张建新, 郦枫, 马丽, 张晓晓, 吴玉环, 杨云峰, 徐根娣, 刘鹏 (2017). 镉胁迫下朱砂根和虎舌红生理响应及其镉抗性. 水土保持学报 31(5), 321-327.
[23] 张庆雯, 王兆昊, 祁静静, 谢宇, 雷天刚, 何永睿, 陈善春, 姚利晓 (2021). 植物胼胝质合成酶研究进展. 园艺学报 48, 661-675.
[24] 张伟, 李锟, 李东, 祁献芳, 康文艺 (2011). 朱砂根化学成分和药理作用研究进展. 中国实验方剂学杂志 17(11), 279- 282.
[25] 张镇川, 何冰, 李甜, 靳亚忠, 耿雪青 (2021). 冠菌素对番茄防御基因表达、胼胝质沉积及细菌生长的影响. 四川农业大学学报 39, 27-34.
[26] 赵成凤, 王晨光, 李红杰, 郑学慧, 杨梅, 张仁和 (2021). 干旱及复水条件下外源褪黑素对玉米叶片光合作用的影响. 生态学报 41, 1431-1439.
[27] 赵丽娟, 麻冬梅, 王文静, 马巧利, 李嘉文, 苏立娜 (2021). 外源褪黑素对盐胁迫下紫花苜蓿幼苗抗氧化能力以及光合作用效率的影响. 西北植物学报 41, 1355-1363.
[28] 钟鸣, 陈琢, 刘宛, 李培军, 台培东 (2012). 逆境胁迫下植物DNA损伤和DNA错配修复研究进展. 生态学杂志 31, 2404- 2411.
[29] Debnath B, Hussain M, Irshad M, Mitra S, Li M, Liu S, Qiu DL (2018). Exogenous melatonin mitigates acid rain stress to tomato plants through modulation of leaf ultrastructure, photosynthesis and antioxidant potential. Molecules 23, 388.
[30] Ellinger D, Naumann M, Falter C, Zwikowics C, Jamrow T, Manisseri C, Somerville SC, Voigt CA (2013). Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiol 161, 1433-1444.
[31] Ellinger D, Voigt CA (2014). Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann Bot 114, 1349- 1358.
[32] Etesami H, Jeong BR (2018). Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotox Environ Safe 147, 881-896.
[33] Izbiańska K, Arasimowicz-Jelonek M, Deckert J (2014). Phenylpropanoid pathway metabolites promote tolerance response of lupine roots to lead stress. Ecotox Environ Safe 110, 61-67.
[34] Ko?hle H, Jeblick W, Poten F, Blaschek W, Kauss H (1985). Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiol 77, 544-551.
[35] Li JH, Arkorful E, Cheng SY, Zhou QQ, Li H, Chen X, Sun K, Li XH (2018). Alleviation of cold damage by exogenous application of melatonin in vegetatively propagated tea plant (Camellia sinensis (L.) O. Kuntze). Sci Hortic 238, 356-362.
[36] Nedukha OM (2015). Callose: localization, functions, and synthesis in plant cells. Cytol Genet 49, 49-57.
[37] Samardakiewicz S, Krzesłowska M, Bilski H, Bartosiewicz R, Woźny A (2012). Is callose a barrier for lead ions entering Lemna minor L. root cells? Protoplasma 249, 347-351.
[38] Shahid M, Arshad M, Kaemmerer M, Pinelli E, Probst A, Baque D, Pradere P, Dumat C (2012). Long-term field metal extraction by Pelargonium: phytoextraction efficiency in relation to plant maturity. Int J Phytoremediat 14, 493- 505.
[39] Teh CY, Shaharuddin NA, Ho CL, Mahmood M (2016). Exogenous proline significantly affects the plant growth and nitrogen assimilation enzymes activities in rice (Oryza sativa) under salt stress. Acta Physiol Plant 38, 151.
[40] Tiryaki I, Keles H (2012). Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin. J Pineal Res 52, 332- 339.
[41] Wu HH, Li BS, Iwakawa HO, Pan YJ, Tang XL, Linghu QY, Liu YL, Sheng SX, Feng L, Zhang H, Zhang XY, Tang ZH, Xia XL, Zhai JX, Guo HW (2020). Plant 22-nt siRNAs mediate translational repression and stress adaptation. Nature 581, 89-93.
[42] Zhao DK, Wang HP, Chen SY, Yu DQ, Reiter RJ (2021). Phytomelatonin: an emerging regulator of plant biotic stress resistance. Trends Plant Sci 26, 70-82.
Outlines

/