Advance in Molecular Mechanism of MBF1 Regulating Plant Heat Response and Development
Received date: 2021-12-16
Accepted date: 2022-01-18
Online published: 2022-01-19
MBF1 (multiprotein bridging factor 1) is a transcriptional co-activator, which is highly conserved in evolution. It exists in all eukaryotes and can activate gene transcription by connecting components of the basal transcription machinery and transcription factors. Plant MBF1 plays important roles in a variety of biological processes, including controlling plant growth and development, and adversity adaptation. This review demonstrates the advance in the molecular structure and regulation mechanism of plant MBF1, and highlights the molecular mechanism of AtMBF1c in the regulation of plant heat stress response.
Key words: heat stress; MBF1; plant; transcriptional regulation
Yi Qin, Yanshuang Liu, Liuliu Qiu, Min Zhou, Xiaoshan Du, Shaojun Dai, Meihong Sun . Advance in Molecular Mechanism of MBF1 Regulating Plant Heat Response and Development[J]. Chinese Bulletin of Botany, 2022 , 57(1) : 56 -68 . DOI: 10.11983/CBB21220
[1] | 李思佳, 张咏雪, 贾明生, 李莹, 戴绍军 (2020). 植物类LORELEI糖基磷脂酰肌醇锚定蛋白研究进展. 植物学报 55, 541-550. |
[2] | 邱丽丽, 赵琪, 张玉红, 戴绍军 (2017). 植物质膜蛋白质组的逆境应答研究进展. 植物学报 52, 128-147. |
[3] | 张洵, 喻娟娟, 王思竹, 李莹, 戴绍军 (2019). 植物DREPP基因家族研究进展. 植物学报 54, 582-595. |
[4] | Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A (2013). ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci 4, 63. |
[5] | Arce DP, Godoy AV, Tsuda K, Yamazaki KI, Valle EM, Iglesias MJ, Di Mauro MF, Casalongué CA (2010). The analysis of an Arabidopsis triple knock-down mutant reveals functions for MBF1 genes under oxidative stress conditions. J Plant Physiol 167, 194-200. |
[6] | Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004). The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol 136, 3649-3659. |
[7] | Bita CE, Gerats T (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4, 273. |
[8] | Blombach F, Launay H, Snijders APL, Zorraquino V, Wu H, de Koning B, Brouns SJJ, Ettema TJG, Camilloni C, Cavalli A, Vendruscolo M, Dickman MJ, Cabrita LD, La Teana A, Benelli D, Londei P, Christodoulou J, van der Oost J (2014). Archaeal MBF1 binds to 30S and 70S ribosomes via its helix-turn-helix domain. Biochem J 462, 373-384. |
[9] | Busk PK, Wulf-Andersen L, Strøm CC, Enevoldsen M, Thirstrup K, Haunsø S, Sheikh SØP (2003). Multiprotein bridging factor 1 cooperates with c-jun and is necessary for cardiac hypertrophy in vitro. Exp Cell Res 286, 102-114. |
[10] | Clarke SM, Mur LAJ, Wood JE, Scott IM (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38, 432-447. |
[11] | Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H (2014). Ethylene, a key factor in the regulation of seed dormancy. Front Plant Sci 5, 539. |
[12] | De Boeck HJ, Bassin S, Verlinden M, Zeiter M, Hiltbrunner E (2016). Simulated heat waves affected alpine grassland only in combination with drought. New Phytol 209, 531-541. |
[13] | Di Mauro MF, Iglesias MJ, Arce DP, Valle EM, Arnold RB, Tsuda K, Yamazaki KI, Casalongué CA, Godoy AV (2012). MBF1s regulate ABA-dependent germination of Arabidopsis seeds. Plant Signal Behav 7, 188-192. |
[14] | Ding LP, Wu Z, Teng RD, Xu SJ, Cao X, Yuan GZ, Zhang DH, Teng NJ (2021). LlWRKY39 is involved in thermotolerance by activating LlMBF1c and interacting with LlCaM3 in lily (Lilium longiflorum). Hortic Res 8, 36. |
[15] | Eulgem T, Somssich IE (2007). Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10, 366-371. |
[16] | Finka A, Cuendet AFH, Maathuis FJM, Saidi Y, Goloubinoff P (2012). Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell 24, 3333-3348. |
[17] | Gao F, Han XW, Wu JH, Zheng SZ, Shang ZL, Sun DY, Zhou RG, Li B (2012). A heat-activated calcium-permeable channel-Arabidopsis cyclic nucleotide-gated ion channel 6-is involved in heat shock responses. Plant J 70, 1056-1069. |
[18] | Godoy AV, Zanetti ME, San Segundo B, Casalongué CA (2001). Identification of a putative Solanum tuberosum transcriptional coactivator up-regulated in potato tubers by Fusarium solani f. sp. eumartii infection and wounding. Physiol Plant 112, 217-222. |
[19] | Gong ZZ, Xiong LM, Shi HZ, Yang SH, Herrera-Estrella LR, Xu GH, Chao DY, Li JR, Wang PY, Qin F, Li JJ, Ding YL, Shi YT, Wang Y, Yang YQ, Guo Y, Zhu JK (2020). Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci 63, 635-674. |
[20] | Grennan AK (2007). The role of trehalose biosynthesis in plants. Plant Physiol 144, 3-5. |
[21] | Higashi Y, Ohama N, Ishikawa T, Katori T, Shimura A, Kusakabe K, Yamaguchi-Shinozaki K, Ishida J, Tanaka M, Seki M, Shinozaki K, Sakata Y, Hayashi T, Taji T (2013). HsfA1d, a protein identified via FOX hunting using Thellungiella salsuginea cDNAs improves heat tolerance by regulating heat-stress-responsive gene expression. Mol Plant 6, 411-422. |
[22] | Hommel M, Khalil-Ahmad Q, Jaimes-Miranda F, Mila I, Pouzet C, Latché A, Pech JC, Bouzayen M, Regad F (2008). Over-expression of a chimeric gene of the transcriptional co-activator MBF1 fused to the EAR repressor motif causes developmental alteration in Arabidopsis and tomato. Plant Sci 175, 168-177. |
[23] | Hozain M, Abdelmageed H, Lee J, Kang M, Fokar M, Allen RD, Holaday AS (2012). Expression of AtSAP5 in cotton up-regulates putative stress-responsive genes and improves the tolerance to rapidly developing water deficit and moderate heat stress. J Plant Physiol 169, 1261-1270. |
[24] | Jaimes-Miranda F, Montes RAC (2020). The plant MBF1 protein family: a bridge between stress and transcription. J Exp Bot 71, 1782-1791. |
[25] | Jegadeesan S, Beery A, Altahan L, Meir S, Pressman E, Firon N (2018). Ethylene production and signaling in tomato (Solanum lycopersicum) pollen grains is responsive to heat stress conditions. Plant Reprod 31, 367-383. |
[26] | Katano K, Honda K, Suzuki N (2018a). Integration between ROS regulatory systems and other signals in the regulation of various types of heat responses in plants. Int J Mol Sci 19, 3370. |
[27] | Katano K, Kataoka R, Fujii M, Suzuki N (2018b). Differences between seedlings and flowers in anti-ROS based heat responses of Arabidopsis plants deficient in cyclic nucleotide gated channel 2. Plant Physiol Biochem 123, 288-296. |
[28] | Kim GD, Cho YH, Yoo SD (2015). Regulatory functions of evolutionarily conserved AN1/A20-like Zinc finger family proteins in Arabidopsis stress responses under high temperature. Biochem Biophys Res Commun 457, 213-220. |
[29] | Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007). Complexity of the heat stress response in plants. Curr Opin Plant Biol 10, 310-316. |
[30] | Larkindale J, Hall JD, Knight MR, Vierling E (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138, 882-897. |
[31] | Li BJ, Gao K, Ren HM, Tang WQ (2018). Molecular mechanisms governing plant responses to high temperatures. J Integr Plant Biol 60, 757-779. |
[32] | Li SJ, Fu QT, Chen LG, Huang WD, Yu DQ (2011). Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233, 1237-1252. |
[33] | Li SJ, Zhou X, Chen LG, Huang WD, Yu DQ (2010). Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol Cells 29, 475-483. |
[34] | Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009). The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2, ra45. |
[35] | Mittler R (2006). Abiotic stress, the field environment and stress combination. Trends Plant Sci 11, 15-19. |
[36] | Mittler R, Finka A, Goloubinoff P (2012). How do plants feel the heat? Trends Biochem Sci 37, 118-125. |
[37] | Müller M, Munné-Bosch S (2015). Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169, 32-41. |
[38] | Nakashima K, Yamaguchi-Shinozaki K (2013). ABA signaling in stress-response and seed development. Plant Cell Rep 32, 959-970. |
[39] | Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017). Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22, 53-65. |
[40] | Ozaki J, Takemaru KI, Ikegami T, Mishima M, Ueda H, Hirose S, Kabe Y, Handa H, Shirakawa M (1999). Identification of the core domain and the secondary structure of the transcriptional coactivator MBF1. Genes Cells 4, 415-424. |
[41] | Pandey GK, Grant JJ, Cheong YH, Kim BG, Li LG, Luan S (2005). ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiol 139, 1185-1193. |
[42] | Qin DD, Wang F, Geng XL, Zhang LY, Yao YY, Ni ZF, Peng HR, Sun QX (2015). Overexpression of heat stress-responsive TaMBF1c, a wheat (Triticum aestivum L.) multiprotein bridging factor, confers heat tolerance in both yeast and rice. Plant Mol Biol 87, 31-45. |
[43] | Sajid M, Rashid B, Ali Q, Husnain T (2018). Mechanisms of heat sensing and responses in plants. It is not all about Ca2+ ions. Biol Plant 62, 409-420. |
[44] | Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006). Dual function of an Arabidopsis transcription factor DREB2A in water-stress- responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103, 18822-18827. |
[45] | Sato H, Mizoi J, Tanaka H, Maruyama K, Qin F, Osakabe Y, Morimoto K, Ohori T, Kusakabe K, Nagata M, Shinozaki K, Yamaguchi-Shinozaki K (2014). Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell 26, 4954-4973. |
[46] | Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, Von Koskull-Döring P (2008). A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53, 264-274. |
[47] | Song C, Ortiz-Urquiza A, Ying SH, Zhang JX, Keyhani NO (2015). Interaction between TATA-binding protein (TBP) and multiprotein bridging factor-1 (MBF1) from the filamentous insect pathogenic fungus Beauveria bassiana. PLoS One 10, e0140538. |
[48] | Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008). The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 283, 9269-9275. |
[49] | Suzuki N, Bassil E, Hamilton JS, Inupakutika MA, Zandalinas SI, Tripathy D, Luo YT, Dion E, Fukui G, Kumazaki A, Nakano R, Rivero RM, Verbeck GF, Azad RK, Blumwald E, Mittler R (2016). ABA is required for plant acclimation to a combination of salt and heat stress. PLoS One 11, e0147625. |
[50] | Suzuki N, Rizhsky L, Liang HJ, Shuman J, Shulaev V, Mittler R (2005). Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol 139, 1313-1322. |
[51] | Suzuki N, Sejima H, Tam R, Schlauch K, Mittler R (2011). Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J 66, 844-851. |
[52] | Takemaru KI, Harashima S, Ueda H, Hirose S (1998). Yeast coactivator MBF1 mediates GCN4-dependent transcriptional activation. Mol Cell Biol 18, 4971-4976. |
[53] | Takemaru KI, Li FQ, Ueda H, Hirose S (1997). Multiprotein bridging factor 1 (MBF1) is an evolutionarily conserved transcriptional coactivator that connects a regulatory factor and TATA element-binding protein. Proc Natl Acad Sci USA 94, 7251-7256. |
[54] | Tian X, Qin Z, Zhao Y, Wen J, Lan T, Zhang L, Wang F, Qin D, Yu K, Zhao A, Hu Z, Yao Y, Ni Z, Sun Q, De Smet I, Peng H, Xin M (2021). Stress granule associated TaMBF1c confers thermotolerance through regulating specific mRNA translation in wheat (Triticum aestivum). New Phytol 233, 1719-1731. |
[55] | Tsuda K, Tsuji T, Hirose S, Yamazaki KI (2004). Three Arabidopsis MBF1 homologs with distinct expression profiles play roles as transcriptional co-activators. Plant Cell Physiol 45, 225-231. |
[56] | Tsuda K, Yamazaki KI (2004). Structure and expression analysis of three subtypes of Arabidopsis MBF1 genes. Biochim Biophys Acta 1680, 1-10. |
[57] | Wang XL, Du Y, Yu DQ (2019). Trehalose phosphate synthase 5-dependent trehalose metabolism modulates basal defense responses in Arabidopsis thaliana. J Integr Plant Biol 61, 509-527. |
[58] | Wang YY, Wei XL, Huang J, Wei JC (2017). Modification and functional adaptation of the MBF1 gene family in the lichenized fungus Endocarpon pusillum under environmental stress. Sci Rep 7, 16333. |
[59] | Xu CX, Jiao C, Sun HH, Cai XF, Wang XL, Ge CH, Zheng Y, Liu WL, Sun XP, Xu YM, Deng J, Zhang ZH, Huang SW, Dai SJ, Mou BQ, Wang QX, Fei ZJ, Wang QH (2017). Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nat Commun 8, 15275. |
[60] | Yan Q, Hou HM, Singer SD, Yan XX, Guo RR, Wang XP (2014). The grape VvMBF1 gene improves drought stress tolerance in transgenic Arabidopsis thaliana. Plant Cell Tiss Org 118, 571-582. |
[61] | Yoshida T, Sakuma Y, Todaka D, Maruyama K, Qin F, Mizoi J, Kidokoro S, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2008). Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem Biophys Res Commun 368, 515-521. |
[62] | Yu RM, Suo YY, Yang R, Chang YN, Tian T, Song YJ, Wang HJ, Wang C, Yang RJ, Liu HL, Gao G (2021). StMBF1c positively regulates disease resistance to Ralstonia solanacearum via its primary and secondary upregulation combining expression of StTPS5 and resistance marker genes in potato. Plant Sci 307, 110877. |
[63] | Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A, Inupakutika MA, Mittler R (2016). ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. J Exp Bot 67, 5381-5390. |
[64] | Zanetti ME, Blanco FA, Daleo GR, Casalongué CA (2003). Phosphorylation of a member of the MBF1 transcriptional co-activator family, StMBF1, is stimulated in potato cell suspensions upon fungal elicitor challenge. J Exp Bot 54, 623-632. |
[65] | Zhang X, Xu ZX, Chen LC, Ren ZH (2019). Comprehensive analysis of multiprotein bridging factor 1 family genes and SlMBF1c negatively regulate the resistance to Botrytis cinerea in tomato. BMC Plant Biol 19, 437. |
[66] | Zou LF, Yu BW, Ma XL, Cao BH, Chen GJ, Chen CM, Lei JJ (2019). Cloning and expression analysis of the BocMBF1c gene involved in heat tolerance in Chinese kale. Int J Mol Sci 20, 5637. |
/
〈 |
|
〉 |