QTL Mapping and Candidate Gene Analysis on Rice Leaf Water Potential
Received date: 2021-02-22
Accepted date: 2021-03-26
Online published: 2021-04-21
To reveal the role and genetic mechanism of genes related to leaf water potential (LWP) in rice drought resistance, the 120 recombinant inbred lines (RILs) populations derived from the cross of Nekken2 and HZ as well as the two parents were chosen as the experiment materials in this study. After testing and analyzing the leaf water potential at tillering stage, quantitative trait loci (QTL) were detected based on the molecular linkage map of these populations constructed by using high-throughput sequencing in the early stage. The experimental results showed that 5 QTLs related to leaf water potential at tillering stage were located on chromosome 2, 3, 4, 11 and 12, respectively, with LOD (likelihood of odd) value all above 2.5, one of which located on chromosome 4 with physical distance between 24 066 261 and 30 847 136 bp showed the highest LOD value of 5.15. Through quantitative analysis of these candidate genes relevant to leaf water potential within the QTL regions, 7 genes, LOC_Os02g56630, LOC_Os02g57720, LOC_Os02g57580, LOC_ Os04g43730, LOC_Os04g46490, LOC_Os04g44570, LOC_Os04g44060, were identified to have different expression levels between the two parents. LOC_Os04g46490, which located within the QTL region on chromosome 4, showed significant difference in gene expression and 6 differences at DNA sequences and changes at amino acids between two parents. By QTL mining and quantitative analysis of related genes, we discovered that these genes were associated with the regulation of leaf water potential, which may indirectly affect the drought resistance of rice. The detected QTL loci have important reference value for QTL fine mapping and genes cloning associated with drought tolerance, thus facilitating our understanding of the genetic basis of rice leaf water potential, and providing genetic resources for developing new drought-tolerant rice cultivars.
Key words: rice; leaf water potential; drought resistance; genetic map; QTL mapping
Chenyang Pan, Yue Zhang, Han Lin, Qianyu Chen, Kairu Yang, Jiaji Jiang, Mengjia Li, Tao Lu, Kexin Wang, Mei Lu, Sheng Wang, Hanfei Ye, Yuchun Rao, Haitao Hu . QTL Mapping and Candidate Gene Analysis on Rice Leaf Water Potential[J]. Chinese Bulletin of Botany, 2021 , 56(3) : 275 -283 . DOI: 10.11983/CBB21039
1 | 曹玉婷, 丁艳菲, 朱诚 (2014). 类受体蛋白激酶与植物非生物胁迫应答. 中国生物化学与分子生物学报 30, 241-247. |
2 | 高世斌, 冯质雷, 李晚忱, 荣廷昭 (2005). 干旱胁迫下玉米根系性状和产量的QTLs分析. 作物学报 31, 718-722. |
3 | 刘鸿艳, 邹桂花, 刘国兰, 胡颂平, 李明寿, 余新桥, 梅捍卫, 罗利军 (2005). 水分梯度下水稻CT, LWP和SF的相关及其QTL定位研究. 科学通报 50, 130-139. |
4 | 穆平 (2004). 水、旱稻DH和RIL群体抗旱性状相关分析及其QTL表达规律比较. 博士论文. 北京: 中国农业大学. pp. 1-115. |
5 | 聂元元, 邹桂花, 李瑶, 刘国兰, 蔡耀辉, 毛凌华, 颜龙安, 刘鸿艳, 罗利军 (2012). 水稻第2染色体上抗旱相关性状QTL的精细定位. 作物学报 38, 988-995. |
6 | 潘琰, 龚吉蕊, 宝音陶格涛, 罗亲普, 翟占伟, 徐沙, 王忆慧, 刘敏, 杨丽丽 (2017). 季节放牧下内蒙古温带草原羊草根茎叶功能性状的权衡. 植物学报 52, 307-321. |
7 | 邱泽森, 朱庆森, 刘建国, 巫亚东, 杨建昌 (1993). 水稻在不同土水势下的生理反应. 江苏农学院学报 14(2), 7-11. |
8 | 曲延英, 穆平, 李雪琴, 田玉秀, 文峰, 张洪亮, 李自超 (2008). 水、旱栽培条件下水稻叶片水势与抗旱性的相关分析及其QTL定位. 作物学报 34, 198-206. |
9 | 王辉, 曹立勇, 郭玉华, 程式华 (2008). 水稻生理特性与抗旱性的相关分析及QTL定位. 中国水稻科学 22, 477-484. |
10 | 王兰, 黄李超, 代丽萍, 杨窑龙, 徐杰, 冷语佳, 张光恒, 胡江, 朱丽, 高振宇, 董国军, 郭龙彪, 钱前, 曾大力 (2014). 利用日本晴/9311重组自交系群体定位水稻成熟期叶形相关性状QTL. 中国水稻科学 28, 589-597. |
11 | 于利刚, 解莉楠, 李玉花 (2011). 植物抗逆反应中水孔蛋白的表达调控研究. 生物技术通报 27(8), 5-14. |
12 | 赵秀琴, 徐建龙, 朱苓华, 黎志康 (2008). 利用回交导入系定位干旱环境下水稻植株水分状况相关QTL. 作物学报 34, 1696-1703. |
13 | 朱鸿宇, 王盛, 张月, 林晗, 路梅, 吴先美, 李三峰, 朱旭东, 饶玉春, 王跃星 (2020). 水稻籽粒砷、铜、铁、汞、锌含量QTL挖掘及候选基因分析. 中国科学: 生命科学 50, 623-632. |
14 | Aza-González C, Herrera-Isidrón L, Nú?ez-Palenius HG, De La Vega OM, Ochoa-Alejo N (2013). Anthocyanin accumulation and expression analysis of biosynthesis- related genes during chili pepper fruit development. Biol Plantarum 57, 49-55. |
15 | Hemamalini GS, Shashidhar HE, Hittalmani S (2000). Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica 112, 69-78. |
16 | Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998). Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10, 451-459. |
17 | Johansson I, Larsson C, Ek B, Kjellbom P (1996). The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca 2+ and apoplastic water potential . Plant Cell 8, 1181-1191. |
18 | Jongdee B, Fukai S, Cooper M (2002). Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res 76, 153-163. |
19 | Li LG, Li SF, Tao Y, Kitagawa Y (2000). Molecular cloning of a novel water channel from rice: its products expression in Xenopus oocytes and involvement in chilling tolerance. Plant Sci 154, 43-51. |
20 | Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods 25, 402-408. |
21 | Marrs KA, Alfenito MR, Lloyd AM, Walbot V (1995). A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375, 397-400. |
22 | Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wago- ner W, Lightner J, Wagner DR (2003). Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15, 1689-1703. |
23 | McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997). Report on QTL nomenclature. Rice Genet Newsl 14, 11-13. |
24 | Mueller LA, Goodman CD, Silady RA, Walbot V (2000). AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123, 1561-1570. |
25 | Pivovaroff AL, Pasquini SC, De Guzman ME, Alstad KP, Stemke JS, Santiago LS (2016). Multiple strategies for drought survival among woody plant species. Funct Ecol 30, 517-526. |
26 | Shinozaki K, Yamaguchi-Shinozaki K (1997). Gene expression and signal transduction in water-stress response. Plant Physiol 115, 327-334. |
27 | Wang YJ, Huang JK, Wang JX, Findlay C (2018). Miti-gating rice production risks from drought through improving irrigation infrastructure and management in China. Aust J Agric Resour Econ 62, 161-176. |
28 | Zhou Q, Ju CX, Wang ZQ, Zhang H, Liu LJ, Yang JC, Zhang JH (2017). Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation. J Integr Agric 16, 1028-1043. |
/
〈 | 〉 |