TECHNIQUES AND METHODS

Establishment and Optimization of a Shoot Tip-based Genetic Transformation System for Foxtail Millet

Expand
  • College of Life Science, Nanjing Agricultural University, Nanjing 210095, China

Received date: 2020-07-02

  Accepted date: 2020-10-14

  Online published: 2020-10-14

Abstract

In this study, a simple and stable genetic transformation system of foxtail millet (Seteria italica) was established and optimized, in which shoot tips were used as the explant. We transformed Yugu 1, an elite millet cultivar, by Agrobacterium-mediated transformation, and tested different treatments to boost transformation efficiency. We used a PCR-based assay to screen transformants in third-leaf stage seedlings. We determined an optimal lethal concentration of glufosinate (Basta) when sprayed to millet seedlings, and tested the different PCR-based genotyping methods with or without Basta spary. Using the newly established pipeline, we further optimized various crucial factors that affect genetic transformation efficiency. We found that an optimal concentration of bacterial culture was OD600=1.4, an optimal concentration of acetolsyringone was 800 μmol∙L -1. We also obtained high transformation efficiency with an infecting pressure at 0.05 MPa, and an infecting time of 40 min. We used the above-mentioned transformation method to transform a Seteria italica calcineurin B-like protein 4 (SiCBL4) overexpression construct. Genetic stability analysis on T2 generation transformed plants was performed by the combination assay of Basta resistance and real-time quantitative fluorescence RT-PCR, which can save the time of genotyping. Altogether, this study establishes a shoot tip-based stable genetic transformation system for foxtail millets, and also develops a robust pipeline to detect transgenic offsprings.

Cite this article

Lan Yang, Ya Liu, Yang Xiang, Xiujuan Sun, Jingwei Yan, Aying Zhang . Establishment and Optimization of a Shoot Tip-based Genetic Transformation System for Foxtail Millet[J]. Chinese Bulletin of Botany, 2021 , 56(1) : 71 -79 . DOI: 10.11983/CBB20119

References

[1] 陈倩楠, 王轲, 汤沙, 杜丽璞, 智慧, 贾冠清, 赵宝华, 叶兴国, 刁现民 (2018). 以抗除草剂Bar基因稳定转化谷子技术研究. 作物学报 44, 1423-1432.
[2] 刁现民, 程汝宏 (2017). 十五年区试数据分析展示谷子糜子育种现状. 中国农业科学 50, 4469-4474.
[3] 贺美林 (2018). 谷子成熟胚再生体系建立及EPSPS基因遗传转化研究. 硕士论文. 晋中: 山西农业大学. pp. 26-27.
[4] 冷秋思, 屈燕, 刘伟, 区智 (2019). 绿绒蒿属植物不同RNA提取方式的比较分析. 分子植物育种 17, 4643-4647.
[5] 李明浩, 陈炜, 邢莉萍, 肖进, 王海燕, 曹爱忠, 王秀娥 (2010). 普通小麦品种Alondra's遗传转化体系的建立. 植物学报 45, 466-471.
[6] 李顺国, 刘斐, 刘猛, 刁现民 (2018). 新时期中国谷子产业发展技术需求与展望. 农学学报 8(6), 96-100.
[7] 李顺国, 刘斐, 刘猛, 赵宇, 王慧军 (2014). 我国谷子产业现状、发展趋势及对策建议. 农业现代化研究 35, 531-535.
[8] 李顺国, 刘猛, 赵宇, 刘斐, 王慧军 (2012). 河北省谷子产业现状和技术需求及发展对策. 农业现代化研究 33, 286-289.
[9] 李颜方, 杜艳伟, 张正, 王高鸿, 赵根有, 赵晋锋, 余爱丽 (2019). 农杆菌介导谷子成熟胚遗传转化体系的建立与优化. 作物杂志 ( 3), 73-79.
[10] 李臻, 刘炜, 管延安, 王庆国, 潘教文 (2015). 谷子遗传转化体系研究进展. 山东农业科学 47(4), 134-138.
[11] 刘宝玲, 张莉, 孙岩, 薛金爱, 高昌勇, 苑丽霞, 王计平, 贾小云, 李润植 (2016). 谷子bZIP转录因子的全基因组鉴定及其在干旱和盐胁迫下的表达分析. 植物学报 51, 473-487.
[12] 刘颖慧, 于静娟, 赵倩, 朱登云, 敖光明 (2005). 根癌农杆菌介导谷子的遗传转化. 农业生物技术学报 13, 32-37.
[13] 宋利军 (2019). 谷子高产栽培技术分析. 农业技术与装备 ( 7), 87-88.
[14] 王永芳, 李伟, 刁现民 (2003). 根癌农杆菌共培养转化谷子技术体系的建立. 河北农业科学 7(4), 1-6.
[15] 张明洲, 崔海瑞, 舒庆尧, 夏英武 (2006). 高粱茎尖再生体系及其遗传转化影响因子的研究. 核农学报 20, 23-26.
[16] 张笑寒, 仇志浪, 赵德刚 (2016). 农杆菌介导McCHIT1基因遗传转化水稻茎尖研究. 中国农学通报 32(27), 114-120.
[17] 张园, 刘正杰, 林春, 闫亚泽, 袁加红, 王入, 毛自朝, 杨焕文 (2020). 芦笋茎尖遗传转化体系的建立与优化. 西北农业学报 29, 109-116.
[18] Arockiasamy S, Ignacimuthu S (2007). Regeneration of transgenic plants from two indica rice (Oryza sativa L.) cultivars using shoot apex explants. Plant Cell Rep 26, 1745-1753.
[19] Dellaporta SL, Wood J, Hicks JB (1983). A plant DNA minipreparation: version II. Plant Mol Biol Rep 1, 19-21.
[20] Jeong JY, Yim HS, Ryu JY, Lee HS, Lee JH, Seen DS, Kang SG (2012). One-step sequence- and ligation-in- dependent cloning as a rapid and versatile cloning method for functional genomics studies. Appl Environ Microbiol 78, 5440-5443.
[21] Jha P, Shashi, Rustagi A, Agnihotri PK, Kulkarni VM, Bhat V (2011). Efficient Agrobacterium-mediated transformation of Pennisetum glaucum (L.) R. Br. using shoot apices as explant source. Plant Cell Tissue Organ Cult 107, 501-512.
[22] Li WB, Masilamany P, Kasha KJ, Pauls KP (2002). Developmental, tissue culture, and genotypic factors affecting plant regeneration from shoot apical meristems of germinated Zea mays L. seedlings. In Vitro Cell Dev Biol Plant 38, 285-292.
[23] Ma HZ, Liu C, Li ZX, Ran QJ, Xie GN, Wang BM, Fang S, Chu JF, Zhang JR (2018). ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiol 178, 753-770.
[24] Sood P, Singh RK, Prasad M (2020). An efficient Agrobacterium-mediated genetic transformation method for foxtail millet (Setaria italica L.). Plant Cell Rep 39, 511-525.
[25] Yan JW, Fang L, Yang L, He H, Huang Y, Liu Y, Zhang AY (2020). Abscisic acid positively regulates L-arabinose metabolism to inhibit seed germination through ABSCISIC ACID INSENSITIVE4-mediated transcriptional promotions of MUR4 in Arabidopsis thaliana. New Phytol 225, 823-834.
[26] Yellisetty V, Reddy LA, Mandapaka M (2015). In planta transformation of sorghum (Sorghum bicolor (L.) Moench) using TPS1 gene for enhancing tolerance to abiotic stresses. J Genet 94, 425-434.
[27] Zhao MC, Tang S, Zhang HS, He MM, Liu JH, Zhi H, Sui Y, Liu XT, Jia GQ, Zhao ZY, Yan JJ, Zhang BC, Zhou YH, Chu JF, Wang XC, Zhao BH, Tang WQ, Li JY, Wu CY, Liu XG, Diao XM (2020). DROOPY LEAF 1 controls leaf architecture by orchestrating early brassinosteroid signaling. Proc Natl Acad Sci USA 117, 21766-21774.
Outlines

/

674-3466/bottom_en.htm"-->