EXPERIMENTAL COMMUNICATIONS

Response of AtR8 lncRNA to Salt Stress and Its Regulation on Seed Germination in Arabidopsis

Expand
  • 1Key Laboratory of Northeast Salinity and Vegetation Restoration and Reconstruction, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
    2Institute of Animal Science, Heilongjiang Academy of Ag-ricultural Sciences, Harbin 150028, China
    3Institute of Farming and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
    4Mudanjiang Medical University, Mudanjiang 157011, China

Received date: 2019-12-18

  Accepted date: 2020-04-15

  Online published: 2020-04-15

Abstract

Long non-coding RNA (lncRNA) is a type of non-coding RNA that is longer than 200 nucleotides and does not encode proteins. lncRNAs are mainly produced by the transcription of RNA polymerase II and are abundant in the organism and have various biological functions. AtR8 lncRNA is transcribed by RNA polymerase III in Arabidopsis thaliana. Previous studies revealed that Salicylic acid (SA) induces AtR8 lncRNA expression in germinated seeds and that the deletion of AtR8 lncRNA decreases seed germination under SA stress. In this study, we found a conserved salt-stress-responsive element (TCTTCTTCTTTA) in the transcriptional region of AtR8 lncRNA. NaCl treatment inhibited AtR8 lncRNA expression in the germinated seeds. High concentration of NaCl significantly inhibited seed germination of atr8, which had partial deletion of AtR8 lncRNA, compared to that of the wild type, indicating that AtR8 lncRNA plays an important role in regulating seed germination in response to salt stress.

Cite this article

Nan Zhang,Ziguang Liu,Shichen Sun,Shengyi Liu,Jianhui Lin,Yifang Peng,Xiaoxu Zhang,He Yang,Xi Cen,Juan Wu . Response of AtR8 lncRNA to Salt Stress and Its Regulation on Seed Germination in Arabidopsis[J]. Chinese Bulletin of Botany, 2020 , 55(4) : 421 -429 . DOI: 10.11983/CBB19244

References

[1] 陈洁, 林栖凤 (2003). 植物耐盐生理及耐盐机理研究进展. 海南大学学报(自然科学版) 21(2), 177-182.
[2] 窦伟 (2010). 硫化氢对盐和铝胁迫下小麦种子萌发及氧化损伤的缓解效应. 硕士论文. 合肥: 合肥工业大学. pp. 28.
[3] 韩志平, 张海霞, 周凤 (2015). 盐胁迫对植物的影响及植物对盐胁迫的适应性. 山西大同大学学报(自然科学版) 31(3), 59-62.
[4] 郝雪峰, 高惠仙, 燕平梅, 李晓春, 李珊珊 (2013). 盐胁迫对大豆种子萌发及生理的影响. 湖北农业科学 52, 1263-1266.
[5] 黄小庆, 李丹丹, 吴娟 (2015). 植物长链非编码RNA研究进展. 遗传 37, 344-359.
[6] 刘春晓, 黄小庆, 刘自广, 彭疑芳, 李丹丹, 张晓旭, 李爽, 汤川泰, 吴娟 (2019). 十字花科植物种子低分子RNA提取方法比较. 基因组学与应用生物学 38, 1236-1241.
[7] 陆玉建, 高春明, 郑香峰, 钮松召 (2012). 盐胁迫对拟南芥种子萌发的影响. 湖北农业科学 51, 5099-5104.
[8] 乔慧萍, 李建设, 雍立华, 艾凤舞 (2007). 植物盐胁迫生理及其适应性调控机制的研究进展. 宁夏农林科技 (3), 34-36, 24.
[9] 苏永全, 吕迎春 (2007). 盐分胁迫对植物的影响研究简述. 甘肃农业科技 (3), 23-27.
[10] 孙兰菊, 岳国峰, 王金霞, 周百成 (2001). 植物耐盐机制的研究进展. 海洋科学 25(4), 28-31.
[11] 王泳超 (2016). γ-氨基丁酸(GABA)调控盐胁迫下玉米种子萌发和幼苗生长的机制. 博士论文. 哈尔滨: 东北农业大学. pp. 73.
[12] 张新宇, 赵兰杰, 李艳军, 孙杰, 刘永昌 (2014). 盐胁迫对拟南芥AtPUB18基因的诱导表达及其启动子分析. 西北植物学报 34, 54-59.
[13] Bergler J, Hoth S (2011). Plant U-box armadillo repeat proteins AtPUB18 and AtPUB19 are involved in salt inhibition of germination in Arabidopsis. Plant Biol 13, 725-730.
[14] Di C, Yuan JP, Wu Y, Li JR, Lin HX, Hu L, Zhang T, Qi YJ, Gerstein MB, Guo Y, Lu ZJ (2014). Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. Plant J 80, 848-861.
[15] Ding JH, Lu Q, Ouyang YD, Mao HL, Zhang PB, Yao JL, Xu CG, Li XH, Xiao JH, Zhang QF (2012). A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA 109, 2654-2659.
[16] Ding ZJ, Yan JY, Li GX, Wu ZC, Zhang SQ, Zheng SJ (2014). WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. Plant J 79, 810-823.
[17] Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J (2007). Target mimicry provides a new me- chanism for regulation of microRNA activity. Nat Genet 39, 1033-1037.
[18] Guo GH, Liu XY, Sun FL, Cao J, Huo N, Wuda B, Xin MM, Hu ZR, Du JK, Xia R, Rossi V, Peng HR, Ni ZF, Sun QX, Yao YY (2018). Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling. Plant Cell 30, 796-814.
[19] Heo JB, Sung S (2011). Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76-79.
[20] Huang Y, Feng CZ, Ye Q, Wu WH, Chen YF (2016). Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development. PLoS Genet 12, e1005833.
[21] Jiang WB, Yu DQ (2009). Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC Plant Biol 9, 96.
[22] Kim DH, Sung S (2012). Environmentally coordinated epigenetic silencing of FLC by protein and long noncoding RNA components. Curr Opin Plant Biol 15, 51-56.
[23] Li DD, Huang XQ, Liu ZG, Li S, Okada T, Yukawa Y, Wu J (2016). Effect of AtR8 lncRNA partial deletion on Arabidopsis seed germination. Mol Soil Biol 7, 1-7.
[24] Liu F, Xu YR, Chang KX, Li SN, Liu ZG, Qi SD, Jia JB, Zhang M, Crawford NM, Wang Y (2019). The long noncoding RNA T5120 regulates nitrate response and assimilation in Arabidopsis. New Phytol 224, 117-131.
[25] Martin R, Liu PP, Nonogaki H (2005). Simple purification of small RNAs from seeds and efficient detection of multiple microRNAs expressed in Arabidopsis thaliana and tomato(Lycopersicon esculentum) seeds. Seed Sci Res 15, 319-328.
[26] Martin RC, Asahina M, Liu PP, Kristof JR, Coppersmith JL, Pluskota WE, Bassel GW, Goloviznina NA, Nguyen TT, Martínez-Andújar C, Arun Kumar MB, Pupel P, Nonogaki H (2010a). The regulation of post-germinative transition from the cotyledon- to vegetative-leaf stages by microRNA-targeted SQUAMOSA PROMOTER-BINDING PROTEIN LIKE13 in Arabidopsis. Seed Sci Res 20, 89-96.
[27] Martin RC, Asahina M, Liu PP, Kristof JR, Coppersmith JL, Pluskota WE, Bassel GW, Goloviznina NA, Nguyen TT, Martínez-Andújar C, Arun Kumar MB, Pupel P, Nonogaki H (2010b). The microRNA156 and microRNA172 gene regulation cascades at post-germinative stages in Arabidopsis. Seed Sci Res 20, 79-87.
[28] Qin T, Zhao HY, Cui P, Albesher N, Xiong LM (2017). A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance. Plant Physiol 175, 1321-1336.
[29] Reyes JL, Chua NH (2007). ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49, 592-606.
[30] Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002). Prediction of plant microRNA targets. Cell 110, 513-520.
[31] Shkolnik D, Finkler A, Pasmanik-Chor M, Fromm H (2019). CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 6: a key regulator of Na+ homeostasis during germination. Plant Physiol 180, 1101-1118.
[32] Swiezewski S, Liu FQ, Magusin A, Dean C (2009). Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target. Nature 462, 799-802.
[33] Wang AH, Hu JH, Gao CB, Chen GL, Wang BC, Lin CF, Song LP, Ding Y, Zhou GL (2019). Genome-wide analysis of long non-coding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (Brassica rapa ssp. chinensis). Sci Rep 9, 5002.
[34] Wu J, Liu CX, Liu ZG, Li S, Li DD, Liu SY, Huang XQ, Liu SK, Yukawa Y (2019a). Pol III-dependent cabbage BoNR8 long ncRNA affects seed germination and growth in Arabidopsis. Plant Cell Physiol 60, 421-435.
[35] Wu J, Okada T, Fukushima T, Tsudzuki T, Sugiura M, Yukawa Y (2012). A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis. RNA Biol 9, 302-313.
[36] Wu XX, Shi T, Iqbal S, Zhang Y, Liu L, Gao ZH (2019b). Genome-wide discovery and characterization of flower development related long non-coding RNAs in Prunus mume. BMC Plant Biol 19, 64.
[37] Xu W, Yang TQ, Wang B, Han B, Zhou HK, Wang Y, Li DZ, Liu AZ (2018). Differential expression networks and inheritance patterns of long non-coding RNAs in castor bean seeds. Plant J 95, 324-340.
[38] Yang BC, Song ZH, Li CN, Jiang JH, Zhou YY, Wang RP, Wang Q, Ni C, Liang Q, Chen HD, Fan LM (2018). RSM1, an Arabidopsis MYB protein, interacts with HY5/ HYH to modulate seed germination and seedling development in response to abscisic acid and salinity. PLoS Genet 14, e1007839.
[39] Yao WJ, Zhao K, Cheng ZH, Li XY, Zhou BR, Jiang TB (2018). Transcriptome analysis of poplar under salt stress and over-expression of transcription factor NAC57 gene confers salt tolerance in transgenic Arabidopsis. Front Plant Sci 9, 1121.
[40] Yin DD, Li SS, Shu QY, Gu ZY, Wu Q, Feng CY, Xu WZ, Wang LS (2018). Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds. Gene 666, 72-82.
[41] Zhang GY, Chen DG, Zhang T, Duan AG, Zhang JG, He CY (2018). Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening. DNA Res 25, 465-476.
[42] Zhang XP, Dong J, Deng FN, Wang W, Cheng YY, Song LR, Hu MJ, Shen J, Xu QJ, Shen FF (2019). The long non-coding RNA lncRNA 973 is involved in cotton response to salt stress. BMC Plant Biol 19, 459.
[43] Zhao XY, Li JR, Lian B, Gu HQ, Li Y, Qi YJ (2018). Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat Commun 9, 5056.
[44] Zhu M, Zhang M, Xing LJ, Li WZ, Jiang HY, Wang L, Xu MY (2017). Transcriptomic analysis of long non-coding RNAs and coding genes uncovers a complex regulatory network that is involved in maize seed development. Genes (Basel) 8, 274.
Outlines

/