EXPERIMENTAL COMMUNICATIONS

Gene Mapping and Candidate Gene Analysis of Rice Early Senescence Mutant LS-es1

Expand
  • 1. College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
    2. State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China

Received date: 2019-03-20

  Accepted date: 2019-06-20

  Online published: 2019-06-26

Abstract

Senescence is an autonomous and irreversible adaptive response at the end of plant development. The molecular mechanism related to premature senescence of leaves is important for rice genetic improvement and breeding of anti-aging varieties. LS-es1 is a stable hereditary premature early senescence mutant obtained by EMS mutagenesis of indica variety TP309. Phenotypic observation, physiological and biochemical analysis of LS-es1 and its wild type TP309 found that LS-es1 accumulated a large amount of reactive oxygen species and more cell death, while the yield-related agronomic traits of LS-es1 were significantly decreased compared to wild type TP309, which also verified the early senescence characteristics of LS-es1. Exogenous hormone treatment of LS-es1 and TP309 seedlings showed that LS-es1 was more sensitive to salicylic acid (SA), abscisic acid (ABA) and methyl jasmonate (MeJA). The LS-es1 gene was mapped to the 46.2 kb region of the long arm of rice chromosome 7 by map-based cloning, which included 8 open reading frames (ORFs). Bioinformatics analysis of the genes in this interval revealed that two candidate functional genes, Os07g0275300 and Os07g0276000, were associated with the early senescence pathway, and the expression levels of these two genes were significantly different between wild type and mutant. The results laid the foundation for further cloning of the LS-es1 gene and in-depth study of its biological function.

Cite this article

Chun Zhou,Ran Jiao,Ping Hu,Han Lin,Juan Hu,Na Xu,Xianmei Wu,Yuchun Rao,Yuexing Wang . Gene Mapping and Candidate Gene Analysis of Rice Early Senescence Mutant LS-es1[J]. Chinese Bulletin of Botany, 2019 , 54(5) : 606 -619 . DOI: 10.11983/CBB19053

References

1 陈昆松, 李方, 徐昌杰, 张上隆, 傅承新 (2004). 改良CTAB法用于多年生植物组织基因组DNA的大量提取. 遗传 26, 529-531.
2 邓接楼, 王艾平, 何长水, 王爱斌, 徐芬芬 (2011). 硅肥对水稻生长发育及产量品质的影响. 广东农业科学 38(12), 58-61.
3 段俊, 梁承邺, 黄毓文 (1997). 杂交水稻开花结实期间叶片衰老. 植物生理学报 23, 139-144.
4 华春, 王仁雷 (2003). 杂交稻及其三系叶片衰老过程中SOD、CAT活性和MDA含量的变化. 西北植物学报 23, 406-409.
5 冷语佳 (2013). 水稻早衰基因ES10的遗传分析与基因定位. 硕士论文. 北京: 中国农业科学院. pp. 16-17.
6 刘翔 (2014). EMS诱变技术在植物育种中的研究进展. 激光生物学报 23, 197-201.
7 孙玉莹 (2013). 水稻叶片早衰基因PSL2的图位克隆及功能初步分析. 硕士论文. 北京: 中国农业科学院. pp. 17-65.
8 徐娜, 徐江民, 蒋玲欢, 饶玉春 (2017). 水稻叶片早衰成因及分子机理研究进展. 植物学报 52, 102-112.
9 张丽霞 (2000). 水稻叶片衰老相关基因的分离. 硕士论文. 福州: 福建农林大学. pp. 20-54.
10 Ansari MI, Lee RH, Chen SCG (2005). A novel senescence-associated gene encoding γ-aminobutyric acid (GABA): pyruvate transaminase is upregulated during rice leaf senescence. Physiol Plant 123, 1-8.
11 Chen HL, Li CR, Liu LP, Zhao JY, Cheng XZ, Jiang GH, Zhai WX (2016). The Fd-GOGAT1 mutant gene lc7 confers resistance to Xanthomonas oryzae pv. oryzae in rice. Sci Rep 6, 26411.
12 Chen LJ, Wuriyanghan H, Zhang YQ, Duan KX, Chen HW, Li QT, Lu X, He SJ, Ma B, Zhang WK, Lin Q, Chen SY, Zhang JS (2013a). An S-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark- induced leaf senescence in rice. Plant Physiol 163, 1752-1765.
13 Chen Y, Xu YY, Luo W, Li WX, Chen N, Zhang DJ, Chong K (2013b). The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes including leaf senescence in rice. Plant Physiol 163, 1673-1685.
14 Fanata WID, Lee KH, Son BH, Yoo JY, Harmoko R, Ko KS, Ramasamy NK, Kim KH, Oh DB, Jung HS, Kim JY, Lee SY, Lee KO (2013). N-glycan maturation is crucial for cytokinin-mediated development and cellulose synthesis in Oryza sativa. Plant J 73, 966-979.
15 Gan S, Amasino RM (1997). Making sense of senescence: molecular genetic regulation and manipulation of leaf senescence. Plant Physiol 113, 313-319.
16 Gan SS, H?rtensteiner S (2013). Frontiers in plant senescence research: from bench to bank. Plant Mol Biol 82, 503-504.
17 Hideg E, Kálai T, Kós PB, Asada K, Hideg K (2006). Singlet oxygen in plants—its significance and possible detection with double (fluorescent and spin) indicator reagents. Photochem Photobiol 82, 1211-1218.
18 Huang LM, Sun QW, Qin FJ, Li C, Zhao Y, Zhou DX (2007). Down-regulation of a SILENT INFORMATION REGULATOR 2-related histone deacetylase gene, OsS- RT1, induces DNA fragmentation and cell death in rice. Plant Physiol 144, 1508-1519.
19 Huang QN, Shi YF, Zhang XB, Song LX, Feng BH, Wang HM, Xu X, Li XH, Guo D, Wu JL (2016). Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice. J Integr Plant Biol 58, 12-28.
20 Jiang HW, Li MR, Liang NT, Yan HB, Wei YB, Xu XL, Liu J, Xu ZF, Chen F, Wu GJ (2007). Molecular cloning and function analysis of the stay green gene in rice. Plant J 52, 197-209.
21 Jiao BB, Wang JJ, Zhu XD, Zeng LJ, Li Q, He ZH (2012). A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice. Mol Plant 5, 205-217.
22 Kariola T, Brader G, Li J, Palva ET (2005). Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell 17, 282-294.
23 Kong ZS, Li MN, Yang WY, Xu WY, Xue YB (2006). A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol 141, 1376-1388.
24 Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A (2007). Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19, 1362-1375.
25 Lee RH, Lin MC, Chen SC (2004). A novel alkaline α-galactosidase gene is involved in rice leaf senescence. Plant Mol Biol 55, 281-295.
26 Lee RH, Wang CH, Huang LT, Chen SCG (2001). Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot 52, 1117-1121.
27 Leng YJ, Yang YL, Ren DY, Huang LC, Dai LP, Wang YQ, Chen L, Tu ZJ, Gao YH, Li XY, Zhu L, Hu J, Zhang GH, Gao ZY, Guo LB, Kong ZS, Lin YJ, Qian Q, Zeng DL (2017). A rice PECTATE LYASE-LIKE gene is required for plant growth and leaf senescence. Plant Physiol 174, 1151-1166.
28 Liang CZ, Wang YQ, Zhu YN, Tang JY, Hu B, Liu LC, Ou SJ, Wu HK, Sun XH, Chu JF, Chu CC (2014). OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA 111, 10013-10018.
29 Lim PO, Kim HJ, Nam HG (2007). Leaf senescence. Annu Rev Plant Biol 58, 115-136.
30 Lin AH, Wang YQ, Tang JY, Xue P, Li CL, Liu LC, Hu B, Yang FQ, Loake GJ, Chu CC (2012). Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158, 451-464.
31 Lin YH, Tan LB, Zhao L, Sun XY, Sun CQ (2016). RLS3, a protein with AAA+ domain localized in chloroplast, sustains leaf longevity in rice. J Integr Plant Biol 58, 971-982.
32 Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCt method . Methods 25, 402-408.
33 Luan WJ, Shen A, Jin ZP, Song SS, Li ZL, Sha AH (2013). Knockdown of OsHox33, a member of the class III homeodomain-leucine zipper gene family, accelerates leaf senescence in rice. Sci China Life Sci 56, 1113-1123.
34 Mahalingam R, Jambunathan N, Gunjan SK, Faustin E, Weng H, Ayoubi P (2006). Analysis of oxidative signaling induced by ozone in Arabidopsis thaliana. Plant Cell Environ 29, 1357-1371.
35 McCabe MS, Garratt LC, Schepers F, Jordi WJRM, Stoopen GM, Davelaar E, van Rhijn JHA, Power JB, Davey MR (2001). Effects of PSAG12- IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127, 505-516.
36 Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M (2010). Defect in non-yellow coloring 3, an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J 59, 940-952.
37 Navabpour S, Morris K, Allen R, Harrison E, A-H- Mackerness S, Buchanan-Wollaston V (2003). Expression of senescence-enhanced genes in response to oxidative stress. J Exp Bot 54, 2285-2292.
38 Qiao YL, Jiang WZ, Lee J, Park BS, Choi MS, Piao RH, Woo MO, Roh JH, Han LZ, Paek NC, Seo HS, Koh HJ (2010). SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol 185, 258-274.
39 Rao YC, Yang YL, Xu J, Li XJ, Leng YJ, Dai LP, Huang LC, Shao GS, Ren DY, Hu J, Guo LB, Pan JW, Zeng DL (2015). EARLY SENESCENCE1 encodes a SCAR-LIKE PROTEIN2 that affects water loss in rice. Plant Physiol 169, 1225-1239.
40 Schippers JH, Schmidt R, Wagstaff C, Jing HC (2015). Living to die and dying to live: the survival strategy behind leaf senescence. Plant Physiol 169, 914-930.
41 Singh S, Giri MK, Singh PK, Siddiqui A, Nandi AK (2013). Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants. J Biosci 38, 583-592.
42 Sun LT, Wang YH, Liu LL, Wang CM, Gan T, Zhang ZY, Wang YL, Wang D, Niu M, Long WH, Li XH, Zheng M, Jiang L, Wan JM (2017). Isolation and characterization of a spotted leaf 32 mutant with early leaf senescence and enhanced defense response in rice. Sci Rep 7, 41846.
43 Tamiru M, Takagi H, Abe A, Yokota T, Kanzaki H, Okamoto H, Saitoh H, Takahashi H, Fujisaki K, Oikawa K, Uemura A, Natsume S, Jikumaru Y, Matsuura H, Umemura K, Terry MJ, Terauchi R (2016). A chloroplast-localized protein LESION AND LAMINA BENDING affects defence and growth responses in rice. New Phytol 210, 1282-1297.
44 Tang YY, Li MR, Chen YP, Wu PZ, Wu GJ, Jiang HW (2011). Knockdown of Os PAO and OsRCCR1 cause different plant death phenotypes in rice. J Plant Physiol 168, 1952-1959.
45 Undan JR, Tamiru M, Abe A, Yoshida K, Kosugi S, Takagi H, Yoshida K, Kanzaki H, Saitoh H, Fekih R, Sharma S, Undan J, Yano M, Terauchi R (2012). Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice(Oryza sativa L.). Genes Genet Syst 87, 169-179.
46 Wang S, Lei CL, Wang JL, Ma J, Tang S, Wang CL, Zhao KJ, Tian P, Zhang H, Qi CY, Cheng ZJ, Zhang X, Guo XP, Liu LL, Wu CY, Wan JM (2017). SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice. J Exp Bot 68, 899-913.
47 Wu HB, Wang B, Chen YL, Liu YG, Chen LT (2013). Characterization and fine mapping of the rice premature senescence mutant ospse1. Theor Appl Genet 126, 1897-1907.
48 Wu ZM, Zhang X, He B, Diao LP, Sheng SL, Wang JL, Guo XP, Su N, Wang LF, Jiang L, Wang CM, Zhai HQ, Wan JM (2007). A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145, 29-40.
49 Yamatani H, Sato Y, Masuda Y, Kato Y, Morita R, Fukunaga K, Nagamura Y, Nishimura M, Sakamoto W, Tanaka A, Kusaba M (2013). Nyc4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll-protein complexes during leaf senescence. Plant J 74, 652-662.
50 Yoshida S (2003). Molecular regulation of leaf senescence. Curr Opin Plant Biol 6, 79-84.
51 Zhou Y, Huang WF, Liu L, Chen TY, Zhou F, Lin YJ (2013). Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol 13, 132.
52 Zhou Y, Liu L, Huang WF, Yuan M, Zhou F, Li XH, Lin YJ (2014). Overexpression of OsSWEET5 in rice causes growth retardation and precocious senescence. PLoS One 9, e94210.
Outlines

/