[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]An Effective Method for the Rooting of Tea Cuttings
Received date: 2019-02-17
Accepted date: 2019-04-23
Online published: 2019-04-29
Tea (Camellia sinensis) is one of the most important beverage crops in the world. With the expanding cultivation area, the demand for tea seedlings is increasing. However, there are many problems with the traditional breeding method for tea plants using cuttings, such as low rooting rate, time consumption and difficulties to obtain materials. Therefore, optimizing the cutting method is of great importance for tea production. In this study, we first changed the culture medium to sponges and found that tea cuttings were able to generate new roots within 1 month on sponges, with rooting rate 32.2%. Second, we optimized the cutting materials by using fresh green tea branches in sponges, and the rooting potential of goung branch maintained with one bud and one leaf is better. In addition, we found that supplying rooting powder to sponges significantly promoted callus formation and new root generation from cuttings. In general, the most effective way was to apply 1.25 g∙L -1 rooting powder to cuttings for 48 h, for a rooting rate of 42.0%. We have established an effective rooting method for tea cuttings by optimizing the culture medium, cutting materials and adding optimal rooting powder. This method could shorten the rooting time, avoid the restriction of cutting materials, and thus effectively reduce the expense of tea cuttings, which has application prospects in tea production.
Key words: tea plant; cuttings; spongy culture; callus; rooting
Xiaomei Liu,Lili Sun,Xiangdong Fu,Hong Liao . An Effective Method for the Rooting of Tea Cuttings[J]. Chinese Bulletin of Botany, 2019 , 54(4) : 531 -538 . DOI: 10.11983/CBB19025
[1] | 艾文琴, 姜瀚原, 李欣欣, 廖红 ( 2018). 一种高效研究大豆根瘤共生固氮的营养液栽培体系. 植物学报 53, 519-527. |
[2] | 陈卡宾 ( 1997). 茶园心土的选取与铺盖技术. 四川农业科技 ( 1), 43-44. |
[3] | 董丽娟, 贺利雄 ( 1991). 茶树插穗成熟度对扦插苗影响的观测. 茶叶通讯 ( 4), 28-31. |
[4] | 郭素娟 ( 1997). 林木扦插生根的解剖学及生理学研究进展. 北京林业大学学报 19(4), 64-69. |
[5] | 梁月荣, 刘祖生, 庄晚芳 ( 1985). 茶树插穗发根的解剖学和生物化学研究. 茶叶科学 5, 19-28. |
[6] | 刘国华, 陈莹, 杨士虎, 张宇彬 ( 2018). 不同激素对白茶茶树扦插生根的影响. 安徽农学通报 24, 69-70. |
[7] | 刘饶, 朱焕明, 刘慧平, 吴锡金, 毛昌会, 叶有奇 ( 2010). 白玉仙茶扦插育苗技术研究. 茶叶 36, 19-20, 18. |
[9] | 刘诗贤, 刘腾飞 ( 2015). 不同处理对北方茶树扦插成活率的研究. 茶叶通讯 42(3), 25-28. |
[10] | 潘根生, 小西茂毅 ( 1995). 供铝条件下氮对茶苗生长发育的影响. 浙江农业大学学报 21, 461-464. |
[11] | 祁琳, 柏新富, 牛玮浩, 张振华 ( 2016). 根际通气状况对盐胁迫下棉花幼苗生长的影响. 植物学报 51, 16-23. |
[12] | 阙玉林 ( 2009). 福鼎大白茶扦插育苗技术. 农业科技通讯 ( 1), 142-143. |
[13] | 施嘉璠 ( 1992). 茶树栽培生理学. 北京: 中国农业出版社. pp. 173-177. |
[14] | 孙绪聪, 卜凡军, 郑海涛, 张艳艳, 牟朴 ( 2018). 不同基质对茶树短穗扦插成活率的影响. 中国园艺文摘 34(5), 31-32, 69. |
[15] | 孙仲序, 刘静, 刘志荣, 邱治霖 ( 2001). 山东茶树扦插育苗技术研究. 山东农业大学学报(自然科学版) 32, 285-288. |
[16] | 陶乃奇, 张斌, 刘信凯, 周和达, 钟乃盛, 严丹峰, 张敏, 高继银, 张文驹 ( 2019). 利用荧光标记SSR鉴别21个茶花新品种. 植物学报 54, 37-45. |
[17] | 王爱杰, 黄彩梅, 刘海燕, 邹天才 ( 2011). 茶树种子繁殖与幼苗优化培育的探讨. 种子 30(8), 105-107. |
[18] | 王立 ( 1993). 茶树扦插生根的理论与实践. 中国茶叶 15(5), 2-4. |
[19] | 王雪萍, 龚自明, 高士伟, 郑鹏程, 叶飞, 滕靖, 王胜鹏, 郑琳, 刘盼盼 ( 2016). 不同处理对茶树穴盘扦插生根的影响. 浙江农业科学 57, 1052-1054, 1060. |
[20] | 吴练荣 ( 2003). 浅谈茶树插穗留养时期与扦插适期. 茶业通报 25, 68. |
[21] | 吴淑平, 吕立哲, 郑杰, 任红楼, 党永超, 蒋双丰 ( 2014). 茶树短穗扦插成活率的影响因素探析. 河南农业科学 43(10), 34-37. |
[22] | 吴婉婉, 孙威江, 陈志丹 ( 2018). 福鼎大白茶高效离体再生体系的优化. 中国茶叶 40(9), 22-25. |
[23] | 向安清, 覃文波 ( 2018). 茶树露地规模扦插技术. 中国茶叶 40(6), 42-43. |
[24] | 杨亚军, 虞富莲, 陈亮, 曾建明, 杨素娟, 李素芳, 束际林, 舒爱民, 章志芳, 王玉书, 王海思, 王平盛, 许玫, 宋维希, 郭吉春, 杨如兴, 张文锦, 陈志辉 ( 2003). 茶树优异资源评价与遗传稳定性研究. 茶叶科学 23, 1-8. |
[25] | 余根梅 ( 2012). 茶苗短穗扦插技术. 现代农业科技( 10), 71, 73. |
[26] | 曾建明, 谷保静, 常杰, 袁海波, 王丽鸳, 董方帅, 成浩, 周健, 葛滢, 陈圣伦 ( 2005). 茶树工厂化育苗适宜基质水分条件研究. 茶叶科学 25, 270-274. |
[27] | 张明泽, 尹晓爱, 杨小礼, 姚玉仙 ( 2016). 外源刺激物质对茶树扦插繁殖的影响研究. 湖南农业科学 ( 12), 51-54. |
[28] | 张文驹, 戎俊, 韦朝领, 高连明, 陈家宽 ( 2018). 栽培茶树的驯化起源与传播. 生物多样性 26, 357-372. |
[29] | 周春发, 俞虹莺 ( 1999). 茶树扦插育苗试验. 福建茶叶 ( 3), 17-18. |
[30] | 周健, 成浩, 王丽鸳 ( 2005). 激素处理对茶树组培苗温室内直接诱导生根的影响. 茶叶科学 25, 265-269. |
[31] | Liu Y, Wang DZ, Zhang SZ, Zhao HM ( 2015). Global expansion strategy of Chinese herbal tea beverage. Adv J Food Sci Technol 7, 739-745. |
[32] | Wei CL, Yang H, Wang SB, Zhao J, Liu C, Gao LP, Xia EH, Lu Y, Tai YL, She GB, Sun J, Cao HS, Tong W, Gao Q, Li YY, Deng WW, Jiang XL, Wang WZ, Chen Q, Zhang SH, Li HJ, Wu JL, Wang P, Li PH, Shi CY, Zheng FY, Jian JB, Huang B, Shan D, Shi MM, Fang CB, Yue Y, Li FD, Li DX, Wei S, Han B, Jiang CJ, Yin Y, Xia T, Zhang ZZ, Bennetzen JL, Zhao SC, Wan XC ( 2018). Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci USA 115, E4151-E4158. |
[33] | Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, Kim C, Zhang Y, Liu Y, Zhu T, Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang JJ, Mao SY, Jiao JY, Zhang D, Zhao Y, Zhao YJ, Zhang LP, Liu YL, Liu BY, Yu Y, Shao SF, Ni DJ, Eichler EE, Gao LZ ( 2017). The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol Plant 10, 866-877. |
/
〈 | 〉 |