Received date: 2019-02-23
Accepted date: 2019-04-03
Online published: 2019-04-03
Nucleotide binding, leucine-rich repeat (NLR) immune receptors are a major family of plant resistance (R) proteins, which are also found in animals. NLRs turn on immune signaling by recognizing pathogen-specific effectors in plants. Although the first few plant NLR R genes were cloned more than 25 years ago, the activation mechanism remained elusive. No structure is available for the full-length plant NLRs despite attempts over the last 2 decades. Recently, studies from the Chai, Zhou and Wang labs, published in Science, solved the structure of zygote arrest 1 (ZAR1) before and after effector recognition, which fills a huge gap in NLR biology. This mini review briefly summarized these findings and related progresses, and highlighted further challenges in NLR-mediated immune signaling field.
Key words: plant immunity; NLR; ZAR1; allosteric activation; resistosome
Shitou Xia, Xin Li . Open a Door of Defenses: Plant Resistosome[J]. Chinese Bulletin of Botany, 2019 , 54(3) : 288 -292 . DOI: 10.11983/CBB19035
[1] | 施怡婷, 杨淑华 ( 2016). 中国科学家在乙烯信号转导领域取得突破性进展. 植物学报 51, 287-289. |
[2] | 于倩倩, 孔祥培, 丁兆军 ( 2018). 中国科学家在生长素信号转导领域取得突破性研究进展. 植物学报 50, 535-537. |
[3] | Bernoux M, Burdett H, Williams SJ, Zhang X, Chen C, Newell K, Lawrence GJ, Kobe B, Ellis JG, Anderson PA, Dodds PN ( 2016). Comparative analysis of the flax immune receptors L6 and L7 suggests an equilibrium-ba-sed switch activation model. Plant Cell 28, 146-159. |
[4] | Bonardi V, Tang S, Stallmann A, Roberts M, Cherkis K, Dangl JL ( 2011). Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc Natl Acad Sci USA 108, 16463-16468. |
[5] | Castel B, Ngou PM, Cevik V, Redkar A, Kim DS, Yang Y, Ding P, Jones JDG ( 2018). Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytol 222, 966-980. |
[6] | Chisholm ST, Coaker G, Day B, Staskawicz BJ ( 2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803-814. |
[7] | Cui H, Tsuda K, Parker JE ( 2015). Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66, 487-511. |
[8] | Dodds PN, Rathjen JP ( 2010). Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11, 539-548. |
[9] | Dong OX, Tong M, Bonardi V, El Kasmi F, Woloshen V, Wünsch LK, Dangl JL, Li X ( 2016). TNL-mediated immunity in Arabidopsis requires complex regulation of the redundant ADR1 gene family. New Phytol 210, 960-973. |
[10] | Duxbury Z, Ma Y, Furzer OJ, Huh SU, Cevik V, Jones JD, Sarris PF ( 2016). Pathogen perception by NLRs in plants and animals: parallel worlds. Bioessays 38, 769-781. |
[11] | Hu Z, Yan C, Liu P, Huang Z, Ma R, Zhang C, Wang R, Zhang Y, Martinon F, Miao D, Deng H, Wang J, Chang J, Chai J ( 2013). Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341, 172-175. |
[12] | Hu Z, Zhou Q, Zhang C, Fan S, Cheng W, Zhao Y, Shao F, Wang HW, Sui SF, Chai J ( 2015). Structural and biochemical basis for induced self-propagation of NLRC4. Science 350, 399-404. |
[13] | Jones JDG, Dangl JL ( 2006). The plant immune system. Nature 444, 323-329. |
[14] | Lewis JD, Lee AH, Hassan JA, Wan J, Hurley B, Jhingree JR, Wang PW, Lo T, Youn JY, Guttman DS, Desveaux D ( 2013). The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc Natl Acad Sci USA 110, 18722-18727. |
[15] | Lewis JD, Wu R, Guttman DS, Desveaux D ( 2010). Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein. PLoS Genet 6, e1000894. |
[16] | Lukasik E, Takken FL ( 2009). STANDing strong, resistance proteins instigators of plant defence. Curr Opin Plant Biol 12, 427-436. |
[17] | Maekawa S, Ohto U, Shibata T, Miyake K, Shimizu T ( 2016). Crystal structure of NOD2 and 35 its implications in human disease. Nat Commun 7, 11813. |
[18] | Maekawa T, Kufer TA, Schulze-Lefert P ( 2011). NLR functions in plant and animal immune systems: so far and yet so close. Nat Immun 12, 817-826. |
[19] | Peart JR, Mestre P, Lu R, Malcuit I, Baulcombe DC ( 2005). NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Curr Biol 15, 968-973. |
[20] | Qi D, DeYoung BJ, Innes RW ( 2012). Structure-function analysis of the coiled-coil and leucine-rich repeat domains of the RPS5 disease resistance protein. Plant Physiol 158, 1819-1832. |
[21] | Qi T, Seong K, Thomazella DPT, Kim JR, Pham J, Seo E, Cho MJ, Schultink A, Staskawicz BJ ( 2018). NRG1 functions downstream of EDS1 to regulate TIR-NLR-me-diated plant immunity in Nicotiana benthamiana. Proc Natl Acad Sci USA 115, E10979-E10987. |
[22] | Rairdan GJ, Moffett P ( 2006). Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18, 2082-2093. |
[23] | Reubold TF, Wohlgemuth S, Eschenburg S ( 2011). Crystal structure of full-length Apaf-1: how the death signal is relayed in the mitochondrial pathway of apoptosis. Structure 19, 1074-1083. |
[24] | Riedl SJ, Li W, Chao Y, Schwarzenbacher R, Shi Y ( 2005). Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434, 926-933. |
[25] | Schultink A, Qi T, Bally J, Staskawicz B ( 2019). Using forward genetics in Nicotiana benthamiana to uncover the immune signaling pathway mediating recognition of the Xanthomonas perforans effector XopJ4. New Phytol 221, 1001-1009. |
[26] | Seto D, Koulena N, Lo T, Menna A, Guttman DS, Desveaux D ( 2017). Expanded type III effector recognition by the ZAR1 NLR protein using ZED1-related 5 kinases. Nat Plants 3, 17027. |
[27] | Tameling WI, Elzinga SD, Darmin PS, Vossen JH, Takken FL, Haring MA, Cornelissen BJ ( 2002). The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14, 2929-2939. |
[28] | Wang G, Roux B, Feng F, Guy E, Li L, Li N, Zhang X, Lautier M, Jardinaud MF, Chabannes M, Arlat M, Chen S, He C, No?l LD, Zhou JM ( 2015). The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18, 285-295. |
[29] | Wang J, Wang J, Hu M, Qi J, Wu S, Wang G, Han Z, Qi Y, Gao N, Wang HW, Zhou JM, Chai J ( 2019a). Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364, eaav5868. |
[30] | Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang HW, Zhou JM, Chai J ( 2019b) . Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364, eaav5870. |
[31] | Williams SJ, Sornaraj P, deCourcy-Ireland E, Menz RI, Kobe B, Ellis JG, Dodds PN, Anderson PA ( 2011). An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP. Mol Plant Microbe Interact 24, 897-906. |
[32] | Wu Z, Li M, Dong OX, Xia S, Liang W, Bao Y, Wasteneys G, Li X ( 2018). Differential regulation of TNL-mediated immune signaling by redundant helper CNLs. New Phytol 222, 938-953. |
[33] | Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, Li Y, David L, Lu A, Wang WL, Marks C, Ouyang Q, Zhang X, Mao Y, Wu H ( 2015). Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350, 404-409. |
[34] | Zhou M, Li Y, Hu Q, Bai XC, Huang W, Yan C, Scheres SH, Shi Y ( 2015). Atomic structure of the apoptosome: mechanism of cytochrome c- and 25 dATP-mediated activation of Apaf-1. Genes Dev 29, 2349-2361. |
/
〈 | 〉 |