TECHNIQUES AND METHODS

Expand
  • College of Agronomy and Biotechnology, Southwest University/Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Chongqing 400715, China

Received date: 2018-08-25

  Accepted date: 2018-12-29

  Online published: 2019-01-16

Abstract

We aimed to construct a convenient evaluation system of potato shade tolerance and explore shade-tolerant germplasm, chlorophyll content, photosynthetic capacity, chlorophyll fluorescence and other parameters of photosynthetic systems of plant leaves under shade at tuber bulking stage. We measured tuber yield per plant and starch content after harvest in 35 potato cultivars (lines). Multiple statistical analyses (e.g., principal component analysis, membership function method, cluster analysis, and regression analysis) were used to analyze the shade tolerance coefficients and evaluate the shade tolerance of the potato cultivars (lines). First, 13 individual photosynthetic parameters related to shade tolerance of potato were converted into six comprehensive indexes by principal component analysis, representing 87.51% of the total information. Then, to obtain the comprehensive evaluation value of shade tolerance (D), we calculated the membership function values for each germplasm and weighted the contribution rate of principal component. Thirty-five potato cultivars (lines) were classified into four shade-intolerance types according to the results of D-value clustering analysis; Eshu10 and Lishu6 were the strongest and weakest shade tolerance cultivars, respectively. Finally, a mathematical evaluation model for potato shade tolerance was established by stepwise regression analysis: D=0.060+0.106Gs+0.214qP+ 0.143NPQ. In addition, the decrease in yield and/or starch content of cultivars (lines) with strong shade tolerance identified by the evaluation system was lower than that of germplasm with weak shade tolerance, so the evaluation system can be used to rapidly evaluate and predict the shade tolerance of potato germplasm.

Cite this article

Xun Liu,Jiao Zhang,Yuchen Shen,Debin Xie,Hongli Li,Chunming Li,Xiaoping Yi,Yong Zhao,Daobin Tang,Changwen Lü,Jichun Wang . [J]. Chinese Bulletin of Botany, 2019 , 54(3) : 360 -370 . DOI: 10.11983/CBB18182

References

[1] 杜彦修, 季新, 张静, 李俊周, 孙红正, 赵全志 ( 2013). 弱光对水稻生长发育影响研究进展. 中国生态农业学报 21, 1307-1317.
[2] 黄承建, 赵思毅, 王龙昌, 王季春, 赵勇, 蔡叶茂, 滕艳, 杨国才 ( 2013). 马铃薯/玉米套作对马铃薯品种光合特性及产量的影响. 作物学报 39, 330-342.
[3] 李彩斌, 郭华春 ( 2015). 遮光处理对马铃薯生长的影响. 西南农业学报 28, 1932-1935.
[4] 李彩斌, 郭华春 ( 2017). 马铃薯品种耐弱光性评价及其指标的筛选. 中国农业科学 50, 3461-3472.
[5] 李春红, 姚兴东, 鞠宝韬, 朱明月, 王海英, 张惠君, 敖雪, 于翠梅, 谢甫绨, 宋书宏 ( 2014). 不同基因型大豆耐荫性分析及其鉴定指标的筛选. 中国农业科学 47, 2927-2939.
[6] 李伟, 眭晓蕾, 王绍辉, 关秋竹, 胡丽萍, 周明, 孟凡珍, 张振贤 ( 2008). 黄瓜幼苗不同叶位叶片光合特性对弱光的响应. 中国农业科学 41, 3698-3707.
[7] 刘婷, 刘卫国, 任梦露, 杜勇利, 邓榆川, 邹俊林, 方萍, 杨文钰 ( 2016). 遮荫程度对不同耐荫性大豆品种光合及抗倒程度的影响. 中国农业科学 49, 1466-1475.
[8] 刘钟, 薛英利, 杨圆满, 李建宾, 安瞳昕, 吴开贤, 字淑慧, 吴伯志 ( 2015). 人工遮荫条件下3个马铃薯品种耐荫性研究. 云南农业大学学报 30, 566-574.
[9] 龙海涛, 李丽梅, 谢泽虹, 刘帅, 李晓云, 邓斌, 刘海燕, 李玲 ( 2015). 综合隶属函数法评价花生品种抗旱性与AhNCED1基因表达的关系. 植物学报 50, 706-712.
[10] 牟会荣 ( 2009). 拔节至成熟期遮光对小麦产量和品质形成的影响及其生理机制. 博士论文. 南京: 南京农业大学. pp. 49-54.
[11] 秦玉芝, 邢铮, 邹剑锋, 何长征, 李炎林, 熊兴耀 ( 2014). 持续弱光胁迫对马铃薯苗期生长和光合特性的影响. 中国农业科学 47, 537-545.
[12] 任梦露, 刘卫国, 刘婷, 杜勇利, 邓榆川, 邹俊林, 袁晋, 杨文钰 ( 2016). 荫蔽胁迫下大豆茎秆形态建成的转录组分析. 作物学报 42, 1319-1331.
[13] 孙祖东, 张志鹏, 蔡昭艳, 曾维英, 赖振光, 陈怀珠, 杨守臻, 唐向民, 苏燕竹, 盖钧镒 ( 2017). 大豆耐荫性评价体系的建立与中国南方大豆资源耐荫性变异. 中国农业科学 50, 792-801.
[14] 王一, 张霞, 杨文钰, 孙歆, 苏本营, 崔亮 ( 2016). 不同生育时期遮荫对大豆叶片光合和叶绿素荧光特性的影响. 中国农业科学 49, 2072-2081.
[15] 武晓玲, 梁海媛, 杨峰, 刘卫国, 佘跃辉, 杨文钰 ( 2015). 大豆苗期耐荫性综合评价及其鉴定指标的筛选. 中国农业科学 48, 2497-2507.
[16] 萧翊华 ( 1958). 光照强度对马铃薯发育的影响. 植物生理学通讯 8, 15-25.
[17] 徐芬芬, 叶利民, 徐卫红, 郑静萍 ( 2010). 小白菜叶绿素含量的测定方法比较. 北方园艺 ( 23), 32-34.
[18] 徐建飞, 金黎平 ( 2017). 马铃薯遗传育种研究: 现状与展望. 中国农业科学 50, 990-1015.
[19] 杨焕春, 李勇, 吕文河, 杜英秋, 单宏, 孔保华 ( 2015). 马铃薯块茎直链淀粉含量检测方法的比较. 中国马铃薯 29, 341-345.
[20] 张娇 ( 2018). 主食化马铃薯育种亲本的筛选及耐荫性评价体系的建立. 硕士论文. 重庆: 西南大学. pp. 35-47.
[21] 周卫霞, 王秀萍, 穆心愿, 李潮海 ( 2013). 弱光胁迫对不同基因型玉米雌雄花发育和授粉结实能力的影响. 作物学报 39, 2065-2073.
[22] 周亚峰, 许彦宾, 王艳玲, 李琼, 胡建斌 ( 2017). 基于主成分-聚类分析构建甜瓜幼苗耐冷性综合评价体系. 植物学报 52, 520-529.
[23] Falster DS, Duursma RA, Fitzjohn RG ( 2018). How functional traits influence plant growth and shade tolerance across the life cycle. Proc Natl Acad Sci USA 115, E6789-E6798.
[24] Jiang L, Hu B, Liu W, Qin W, Wu H, Zhang J, Yang C, Deng J, Shu K, Du J, Yang F, Yong T, Wang X, Yang W ( 2017). Metabolomic tool to identify soybean [Glycine max(L.) Merrill] germplasms with a high level of shade tolerance at the seedling stage. Sci Rep 7, 42478.
[25] Li X, Xue S, Liu Y, Xue S, Li W ( 2013). Multivariate statistical analysis of low-light tolerance in tomato ( Solanum lycopersicum Mill.) cultivars and their ultrastructural observations. J Plant Growth Regul 32, 646-653.
Outlines

/