TECHNIQUES AND METHODS

Establishing a High-efficiency Regeneration System in Pumpkin (Cucurbita moschata)

Expand
  • Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Received date: 2018-07-18

  Accepted date: 2018-12-10

  Online published: 2018-12-10

Abstract

To improve regeneration efficiency of pumpkin (Cucurbita moschata), a high-efficiency regeneration system of plantlets was established. Cotyledons were used as explants and cultured on MS supplemented with 35 concentrations of phytohormone to induce shoots. The frequency of regeneration plantlets was affected by the concentration and proportion of phytohormone in medium. Within a certain concentration, 6-BA appeared to promote the efficiency of shoot regeneration. The addition of ABA in MS caused chlorosis of cotyledons; however, 6-BA and ABA combined could effectively promote the regeneration frequency of explants. Explants cultured on MS containing 1.0 mg∙L -1 6-BA and 0.5 mg∙L -1 ABA showed the highest frequency of shoot regeneration (90.26%). The elongated shoots were cultured on MS for rooting; plantlets appeared healthy after transplanting and nearly 70 days was required for explants to become a completely regenerated plant with the high-efficiency regeneration system for pumpkin.

Cite this article

Jia Guo,Yansu Li,Chaoxing He,Yan Yan,Xianchang Yu . Establishing a High-efficiency Regeneration System in Pumpkin (Cucurbita moschata)[J]. Chinese Bulletin of Botany, 2019 , 54(4) : 539 -546 . DOI: 10.11983/CBB18161

References

[1] 褚剑峰, 郑琪, 黄伟忠 ( 2004). 日本迷你南瓜的组织培养及快速繁殖. 植物生理学通讯 40, 711.
[2] 崔凯荣, 戴若兰 ( 2000). 植物体细胞胚发生的分子生物学. 北京: 科学出版社. pp. 49-53.
[3] 冯凤娟, 梁东, 马锋旺, 张栋 ( 2008). 甜瓜叶片高效再生体系的建立. 西北农业学报 17(5), 321-324.
[4] 付洪冰, 崔崇士, 赵曦, 刘琦 ( 2010). 农杆菌介导南瓜遗传转化体系的建立. 植物学报 45, 472-478.
[5] 付秋实, 曹芸运, 谭明明, 王烨, 郭仰东, 王怀松 ( 2014). 薄皮甜瓜离体再生体系的优化. 中国瓜菜 27(2), 16-19.
[6] 付秋实, 谭明明, 王烨, 王怀松 ( 2015). 不同甜瓜品种再生体系的比较研究. 中国瓜菜 28(2), 5-8.
[7] 耿新丽, 赵一鹏, 秦勇 ( 2006). 金童观赏南瓜离体繁殖技术研究. 安徽农业科学 34, 1338-1339.
[8] 李泠, 潘俊松, 何欢乐, 吴爱忠, 蔡润 ( 2007). 黄瓜离体培养再生技术及农杆菌介导的ACS1转化. 上海交通大学学报(农业科学版) 25, 17-23, 29.
[9] 李贞霞, 李新峥, 董卫华 ( 2005). 南瓜组织培养体系建立研究. 北方园艺 ( 3), 75-76.
[10] 林德佩 ( 2000). 南瓜植物的起源和分类. 中国西瓜甜瓜 ( 1), 36-38.
[11] 刘栓桃, 赵智中, 苗前 ( 2004). 黑籽南瓜的组织培养与快速繁殖. 植物生理学通讯 40, 459.
[12] 陆玲, 周燮 ( 1992). ABA与GA3对黄瓜离体子叶和石刁柏茎生根的影响. 植物生理学报 18, 173-178.
[13] 鲁晓晓, 郭威涛, 周俊国, 江毅, 姜立娜, 陈学进 ( 2017). 印度南瓜愈伤组织诱导及其离体再生培养. 北方园艺 ( 15), 42-47.
[14] 梅茜, 张兴国 ( 2002). 黄瓜组织培养研究. 西南农业大学学报 24, 266-267.
[15] 闵子扬, 李涵, 邹甜, 童龙, 成娟, 孙小武 ( 2016). 南瓜未授粉子房离体培养及植株再生. 植物学报 51, 74-80.
[16] 师桂英, 徐秉良, 薛应钰 ( 2006). 厚皮甜瓜黄河蜜植株再生研究. 兰州大学学报(自然科学版) 42(5), 48-51.
[17] 孙守如, 章鹏, 胡建斌, 孙利萍, 张曼, 孙治强 ( 2013). 南瓜未受精胚珠的离体培养及植株再生. 植物学报 48, 79-86.
[18] 肖守华, 李国生, 焦自高, 王崇启, 董玉梅, 李圣辉 ( 2010). 西瓜高效再生体系的建立. 中国瓜菜 23(3), 11-14.
[19] 谢冰, 王秀峰, 樊治成 ( 2006). 西葫芦未受精胚珠离体培养条件的优化及胚囊植株的产生. 中国农业科学 39, 132-138.
[20] 张若纬, 顾兴芳, 王烨, 张圣平, 张宝玺 ( 2009). 基因型和6-BA对黄瓜子叶节再生频率的影响. 中国蔬菜 ( 22), 45-48.
[21] 张亚锋, 曹家树, 武涛 ( 2007). 南瓜属植物再生体系的建立及其应用. 植物生理学通讯 43, 599-604.
[22] 张玉园, 鲁晓晓, 周俊国, 李新峥, 朱自果 ( 2015). 南瓜子叶节离体再生体系构建. 江苏农业科学 43(12), 26-29.
[23] 赵建萍, 柏新付, 蒋小满, 毕可华 ( 2000). 培养因子对艾西丝南瓜芽增殖及不定根形成的影响. 植物学通报 17, 84-86.
[24] 赵晓菲, 程永安, 张恩慧, 唐桃霞 ( 2014). 西葫芦双单倍体自交一代离体再生研究. 西北农业学报 23(6), 134-140.
[25] 邹建, 宋明, 汤青林, 张钟灵, 刘红雨, 周虹 ( 2003). 观赏南瓜子叶离体培养的初步研究. 西南农业大学学报(自然科学版) 25(4), 297-299.
[26] Ananthakrishnan G, Xia XD, Elman C, Singer S, Paris HS, Gal-On A, Gaba V ( 2003). Shoot production in squash (Cucurbita pepo) by in vitro organogenesis. Plant Cell Rep 21, 739-746.
[27] Curuk S, Ananthakrishnan G, Singer S, Xia XD, Elman C, Nestel D, Cetiner S, Gaba V ( 2003). Regeneration in vitro from the hypocotyl of Cucumis species produces almost exclusively diploid shoots, and does not require light. HortScience 38, 105-109.
[28] Gonsalves C, Xue BD, Gonsalves D ( 1995). Somatic embryogenesis and regeneration from cotyledon explants of six squash cultivars. HortScience 30, 1295-1297.
[29] Han JS, Kim CK, Park SH, Hirschi KD, Mok IG ( 2005). Agrobacterium-mediated transformation of bottle gourd( Lagenaria siceraria Standl.). Plant Cell Rep 23, 692-698.
[30] Hu BW, Li DW, Liu X, Qi JJ, Gao DL, Zhao SQ, Huang SW, Sun JJ, Yang L ( 2017). Engineering non-transgenic Gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Mol Plant 10, 1575-1578.
[31] Kintzios S, Sereti E, Bluchos P, Drossopoulos J, Kitsaki C, Liopa-Tsakalidis A ( 2002). Growth regulator pretreatment improves somatic embryogenesis from leaves of squash (Cucurbita pepo L.) and melon( Cucumis melo L.). Plant Cell Rep 21, 1-8.
[32] Ko?mrlj K, Kladnik A, Bohanec B ( 2015). Adventitious regeneration in styrian oil pumpkin in relation to the endoreduplication pattern and induced tetraploidy on fusaric acid-supplemented media. Plant Growth Regul 75, 587-594.
[33] Lee YK, Chung WI, Ezura H ( 2003). Efficient plant regeneration via organogenesis in winter squash (Cucurbita maxima Duch.). Plant Sci 164, 413-418.
[34] Paula PC ( 1991). Somatic embryogenesis and plant regeneration of squash Cucurbita pepo L cv. YC 60. Plant Cell Rep 9, 620-622.
[35] Ren Y, Bang H, Gould J, Rathore KS, Patil BS, Crosby KM ( 2013). Shoot regeneration and ploidy variation in tissue culture of honeydew melon (Cucumis melo L. inodorus). In Vitro Cell Dev Biol-Plant 49, 223-229.
[36] Schroeder CA ( 1968). Adventive embryogenesis in fruit pericarp tissue in vitro. Bot Gaz 129, 374-376.
[37] Zhang YF, Zhou JH, Wu T, Cao JS ( 2008). Shoot regeneration and the relationship between organogenic capacity and endogenous hormonal contents in pumpkin. Plant Cell Tiss Organ Cult 93, 323-331.
Outlines

/