INVITED REVIEW

Auxin Regulates Plant Growth and Development by Mediating Various Environmental Cues

Expand
  • The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan 250100, China

Received date: 2017-07-23

  Accepted date: 2017-11-08

  Online published: 2017-11-08

Abstract

Because plants are sessile and photo-autotrophic, they must adapt to the surrounding environment. Auxin is one of the most important plant hormones essential for plant growth and development. Recently, auxin was found to regulate plant growth by responding to endogenous developmental signals and by mediating various environmental cues. In this review, we focus on how auxin regulates plant growth by mediating various environmental cues such as light, temperature, gravity, nutrient element and metal ion signals.

Cite this article

Guangchao Liu , Zhaojun Ding . Auxin Regulates Plant Growth and Development by Mediating Various Environmental Cues[J]. Chinese Bulletin of Botany, 2018 , 53(1) : 17 -26 . DOI: 10.11983/CBB17135

References

[1] Abbas M, Hernández-García J, Blanco-Touriñán N, Ali- aga N, Minguet EG, Alabadi D, Blázquez MA (2018). Reduction of indole-3-acetic acid methyltransferase activi- ty compensates for high-temperature male sterility in Ara- bidopsis.Plant Biotechnol J 16, 272-279.
[2] Berleth T, Krogan NT, Scarpella E (2004). Auxin signals- turning genes on and turning cells around.Curr Opin Plant Biol 7, 553-563.
[3] Bouguyon E, Brun F, Meynard D, Kubeš M, Pervent M, Leran S, Lacombe B, Krouk G, Guiderdoni E, Zaží- malová E, Hoyerová K, Nacry P, Gojon A (2015). Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1.Nat Plants 1, 15015.
[4] Casal JJ (2013). Photoreceptor signaling networks in plant responses to shade.Annu Rev Plant Biol 64, 403-427.
[5] Christie JM, Yang H, Richter GL, Sullivan S, Thomson CE, Lin J, Titapiwatanakun B, Ennis M, Kaiserli E, Lee OR, Adamec J, Peer WA, Murphy AS (2011). phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism.PLoS Biol 9, e1001076.
[6] Deb S, Sankaranarayanan S, Wewala G, Widdup E, Sa- muel MA (2014). The S-domain receptor kinase Arabidopsis receptor kinase2 and the U box/armadillo repeat-containing E3 ubiquitin ligase9 module mediates lateral root development under phosphate starvation in Arabidopsis.Plant Physiol 165, 1647-1656.
[7] Devaiah BN, Karthikeyan AS, Raghothama KG (2007). WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis.Plant Physiol 143, 1789-1801.
[8] Ding ZJ, Galván-Ampudia CS, Demarsy E, Łangowski L, Kleine-Vehn J, Fan YW, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011). Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis.Nat Cell Biol 13, 447-452.
[9] Elobeid M, Göbel C, Feussner I, Polle A (2012). Cadmium interferes with auxin physiology and lignification in poplar.J Exp Bot 63, 1413-1421.
[10] Favero DS, Jacques CN, Iwase A, Le KN, Zhao JF, Sugimoto K, Neff MM (2016). SUPPRESSOR OF PHYTOCHROME B4-#3 represses genes associated with auxin signaling to modulate hypocotyl growth.Plant Phy- siol 171, 2701-2716.
[11] Folta KM, Pontin MA, Karlin-Neumann G, Bottini R, Spalding EP (2003). Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for au- xin and gibberellin in the control of hypocotyl growth by blue light.Plant J 36, 203-214.
[12] Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis.Nature 415, 806-809.
[13] Ge YH, Yan FL, Zourelidou M, Wang ML, Ljung K, Fastner A, Hammes UZ, Di Donato M, Geisler M, Schwe- chheimer C, Tao Y (2017). SHADE AVOIDANCE 4 is required for proper auxin distribution in the hypocotyl.Plant Physiol 173, 788-800.
[14] Goyal A, Karayekov E, Galvão VC, Ren H, Casal JJ, Fankhauser C (2016). Shade promotes phototropism th- rough phytochrome B-controlled auxin production.Curr Biol 26, 3280-3287.
[15] Hersch M, Lorrain S, de Wit M, Trevisan M, Ljung K, Bergmann S, Fankhauser C (2014). Light intensity modu- lates the regulatory network of the shade avoidance response in Arabidopsis.Proc Natl Acad Sci USA 111, 6515-6520.
[16] Hu YF, Zhou GY, Na XF, Yang LJ, Nan WB, Liu X, Zhang YQ, Li JL, Bi YR (2013). Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings.J Plant Physiol 170, 965-975.
[17] Keuskamp DH, Pollmann S, Voesenek LACJ, Peeters AJM, Pierik R (2010). Auxin transport through PIN- FORMED 3 (PIN3) controls shade avoidance and fitness during competition.Proc Natl Acad Sci USA 107, 22740-22744.
[18] Kollmeier M, Felle HH, Horst WJ (2000). Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basi- petal auxin flow involved in inhibition of root elongation by aluminum?Plant Physiol 122, 945-956.
[19] Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010). Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants.Dev Cell 18, 927-937.
[20] Kuo HF, Chang TY, Chiang SF, Wang WD, Charng YY, Chiou TJ (2014). Arabidopsis inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level.Plant J 80, 503-515.
[21] Liu GC, Gao S, Tian HY, Wu WW, Robert HS, Ding ZJ (2016). Local transcriptional control of YUCCA regulates auxin promoted root-growth inhibition in response to aluminium stress in Arabidopsis.PLoS Genet 12, e1006360.
[22] Ma DB, Li X, Guo YX, Chu JF, Fang S, Yan CY, Noel JP, Liu HT (2016). Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light.Proc Natl Acad Sci USA 113, 224-229.
[23] Ma WY, Li JJ, Qu BY, He X, Zhao XQ, Li B, Fu XD, Tong YP (2014). Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis. Plant J 78, 70-79.
[24] Miura K, Lee J, Gong QQ, Ma SS, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM (2011). SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation.Plant Physiol 155, 1000-1012.
[25] Morelli G, Ruberti I (2000). Shade avoidance responses. Driving auxin along lateral routes.Plant Physiol 122, 621-626.
[26] Pérez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra- Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008). Phosphate availability alters lateral root deve- lopment in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor.Plant Cell 20, 3258-3272.
[27] Rakusova H, Abbas M, Han H, Song S, Robert HS, Friml J (2016). Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity.Curr Biol 26, 3026-3032.
[28] Sato A, Yamamoto KT (2008). Overexpression of the non- canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis. Physiol Plant 133, 397-405.
[29] Sun J, Qi L, Li Y, Chu J, Li C (2012). PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet 8, e1002594.
[30] Sun JQ, Qi LL, Li YN, Zhai QZ, Li CY (2013). PIF4 and PIF5 transcription factors link blue light and auxin to re- gulate the phototropic response in Arabidopsis.Plant Cell 25, 2102-2114.
[31] Sun P, Tian QY, Chen J, Zhang WH (2010). Aluminium- induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin.J Exp Bot 61, 347-356.
[32] Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007). Root tip contact with low-phosphate media reprograms plant root architecture.Nat Genet 39, 792-796.
[33] Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001). Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex.Genes Dev 15, 2648-2653.
[34] Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao YD, Ballare CL, Sandberg G, Noel JP, Chory J (2008). Rapid synthesis of auxin via a new tryptophan- dependent pathway is required for shade avoidance in plants.Cell 133, 164-176.
[35] Wang HZ, Yang KZ, Zou JJ, Zhu LL, Xie ZD, Morita MT, Tasaka M, Friml J, Grotewold E, Beeckman T, Vanneste S, Sack F, Le J (2015). Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nat Commun 6, 8822.
[36] Wang RH, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016). HSP90 regulates temperature-dependent seed- ling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1.Nat Commun 7, 10269.
[37] Willige BC, Ahlers S, Zourelidou M, Barbosa ICR, Demarsy E, Trevisan M, Davis PA, Roelfsema MRG, Hangarter R, Fankhauser C, Schwechheimer C (2013). D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis.Plant Cell 25, 1674-1688.
[38] Wu GS, Cameron JN, Ljung K, Spalding EP (2010). A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B.Plant J 62, 179-191.
[39] Xu L, Jin L, Long L, Liu LL, He X, Gao W, Zhu LF, Zhang XL (2012). Overexpression of GbWRKY1 positively regu- lates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis. Plant Cell Rep 31, 2177-2188.
[40] Yang ZB, Geng XY, He CM, Zhang F, Wang R, Horst WJ, Ding ZJ (2014). TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum- induced inhibition of root growth in Arabidopsis.Plant Cell 26, 2889-2904.
[41] Yu CL, Sun CD, Shen CJ, Wang SK, Liu F, Liu Y, Chen YL, Li CY, Qian Q, Aryal B, Geisler M, Jiang DA, Qi YH (2015). The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice ( Oryza sativa L.). Plant J 83, 818-830.
[42] Yuan H, Liu D (2008). Signaling components involved in plant responses to phosphate starvation.J Integr Plant Biol 50, 849-859.
[43] Zhang Y, Yu QQ, Jiang N, Yan X, Wang C, Wang QM, Liu JZ, Zhu MY, Bednarek SY, Xu J, Pan JW (2017). Clathrin regulates blue light-triggered lateral auxin distribution and hypocotyl phototropism in Arabidopsis.Plant Cell Environ 40, 165-176.
[44] Zhao S, Zhang ML, Ma TL, Wang Y (2016). Phosphorylation of ARF2 relieves its repression of transcription of the K+ transporter gene HAK5 in response to low potassium stress. Plant Cell 28, 3005-3019.
Outlines

/

674-3466/bottom_en.htm"-->