Callus Induction and High Efficiency Plant Regeneration System Establishment of Pararuellia delavayana

Expand
  • 1Engineering Research Center for Reproducing Fine Varieties of Chinese Medicinal Plants, Yunnan University of Chinese Traditional Medicine, Kunming 650500, China
    2Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
? These authors contributed equally to this paper

Received date: 2014-12-08

  Accepted date: 2015-05-30

  Online published: 2016-02-01

Abstract

The effectiveness of different combinations of growth regulators and concentrations on callus induction, bud induction and plant regeneration were studied using explants excised from seedlings of Pararuellia delavayana. The optimum explants for callus induction and plant regeneration were stem explants with nodes. The percentage of callus induction was up to 85.38% when stem explants with nodes were cultured on MS medium containing 1.0 mg·L-1 6-BA, 0.5 mg·L-1 NAA and 0.1 mg·L-1 KT after 17 days, The percentage of bud formation from callus was up to 97.55% after 25 days, and the frequency of adventitious bud formation was 15.38 after 30 days. Vitrification emerged after 6 subculture cycles, and the phenomenon was aggravated with increasing generation, but the proliferation rate decreased. MS and B5 media were used interchangeably to solve the problem. The optimal medium for rooting was MS+0.5 mg·L-1 NAA; the rooting rate was 100% and the survival rate of transplants was >95%. We established a rapid propagation system and provided an effective solution for protecting wild resources and sprout multiplication of P. delavayana, while providing an experimental base for research in genetic transformation.

Cite this article

Meiping Lü, Yuanzhong Wang, Hengyu Huang . Callus Induction and High Efficiency Plant Regeneration System Establishment of Pararuellia delavayana[J]. Chinese Bulletin of Botany, 2016 , 51(1) : 89 -97 . DOI: 10.11983/CBB14207

References

1 蔡能, 易自力, 李祥 (2003). 改善植物大规模组织培养条件的研究进展. 植物学通报 20, 745-751.
2 蔡祖国, 徐小彪, 周会萍 (2005). 植物组织培养中的玻璃化现象及其预防. 生物技术通讯 16, 353-355.
3 陈兵先, 黄宝灵, 吕成群, 杨来安, 陈文军, 任玲, 王劲松 (2011). 植物组织培养试管苗玻璃化现象研究进展. 林业科技开发 25, 1-5.
4 陈雪, 张金柱, 潘兵兵, 桑成瑾, 马雪, 杨涛, 车代弟 (2011). 月季愈伤组织的诱导及植株再生. 植物学报 46, 569-574.
5 冯欢, 易姝利, 谢佳恒, 雷梦琦, 黄萱 (2014). 微型月季愈伤组织诱导及植株再生研究. 植物学报 49, 595-602.
6 国家中药管理局《中华本草》编委会 (1998). 中华本草(第7卷). 上海: 上海科学技术出版社. pp. 6478.
7 胡峰, 施琼, 黄烈健 (2014). 黑木相思愈伤组织诱导及植株再生. 植物学报 49, 603-610.
8 黄格 (2010). 药用植物穿心莲组培快繁及其影响因子的研究. 硕士论文. 南宁: 广西大学. pp. 6-9.
9 姜北 (2001). 五种药用植物化学成分与生物活性研究. 硕士论文. 昆明: 中国科学院昆明植物研究所. pp. 9-16.
10 江苏新医学院 (1977). 中药大词典(上册). 上海: 上海科学技术出版社. pp. 813.
11 李红, 李永文 (2007). 金脉单药花栽培管理技术. 河北农业科技 6, 37.
12 李林轩, 凌征柱, 李翠, 彭凌, 韦坤华 (2013). 珐菲亚组织培养条件的优化研究. 中草药 44, 1334-1337.
13 李胜, 李唯, 杨德龙, 曹孜义 (2003). 植物试管苗玻璃化现象研究进展. 甘肃农业大学学报 38, 1-16.
14 吕春 (2009). 红斑枪刀药组织培养体系研究. 硕士论文. 成都: 四川农业大学. pp. 8-12.
15 苏钛, 黄宁珍, 付传明 (2009). 匙羹藤组织培养条件优化研究. 广西植物 29, 87-91.
16 孙清荣, 孙洪雁, 张力思, 周广方, 刘庆忠 (2010). 酸枣叶片不定梢形成及玻璃化的影响因素. 西北植物学报 30, 1039-1044.
17 吴征镒, 李锡文 (2010). 中国植物志(第70卷). 北京: 科学出版社. pp. 55.
18 郗浩江, 葛素因, 王芳 (2013). 新疆紫草组织培养中试管苗玻璃化的控制与修复. 新疆师范大学学报 32, 21-25.
19 张爱莲 (2005). 爵床,锥头麻和木姜冬青的化学成分研究. 硕士论文. 成都: 中国科学院成都有机化学研究所. pp. 6-18.
20 张翠玉, 廖晴 (1991). 月季试管苗玻璃化原因及控制方法研究. 新疆农业科学 2, 76-78.
21 张庆红, 汤丽云, 司徒少金, 王莎, 何国振 (2014). 药用植物栀子的组织培养. 植物学报 49, 331-336.
22 周菊花, 林证明, 梁海曼 (1990). 控制瑞香试管苗玻璃化的研究. 园艺学报 17, 229-232.
23 Chakrabarty D, Park SY, Ali MB, Shin KS, Paek KY (2006). Hyperhydricity in apple: ultrastructure and physico- logical aspects.Tree Physiol 26, 377-388.
24 Ivanova M, Van SJ (2008). Effect of ammonium ions and cytokinins on hyperhydricity and multiplication rate of in vitro regenerated shoots of Aloe polyphylla.Plant Cell Tiss Org Cult 92, 227-231.
25 Kevers C, Fanck T, Strasser RJ, Dommes J, Gaspar T (2004). Hyperhydricity of micropropagated shoots: a typically stress-induced change of physiological state.Plant Cell Tiss Org Cult 77, 181-191.
26 Mayor ML, Nestares G, Zorzoli R, Picardi LA (2003). Reduction of hyperhydricity in sunfllower tissue culture.Plant Cell Tiss Org Cult 72, 99-103.
27 Piqueras A, Cortina M, Serna MD, Casas JL (2002). Polyamines and hyperhydricity in micropropagated carnation plants.Plant Sci 162, 671-678.
28 Saher S, Piqueras A, Hellin E, Olmos E (2004). Hyperhydricity in micro-propagated carnation shoot: the role of oxidative stress.Physiol Plant 120, 152-161.
29 Sreedhar RV, Venkatachalam L, Neelwarne B (2009). Hyperhydricity related morphologic and biochemical ch- anges in vanilla (Vanilla planifolia).J Plant Growth Regul 28, 46-57.
30 Wang YL, Wang XD, Zhao B, Wang YC (2007). Reduction of hyperhydricity in the culture of Lepidium meyenii shoots by the addition of rare earth elements.J Plant Growth Regul 52, 151-159.
31 Wu Z, Chen LJ, Long YJ (2009). Analysis of ultrastructure and reactive oxygen species of hyperhydric garlic (Allium sativum L.) shoot.In Vitro Cell Dev Biol-Plant 45, 483-490.
Outlines

/