EXPERIMENTAL COMMUNICATIONS

Relationship Between Negative Air Ion Generation by Plants and Stomatal Characteristics Under Stimulation of Pulsed Electrical Field

Expand
  • 1Fujian Engineering Technology Research Center of Breeding and Utilization for Special Crops, Fuzhou 350002, China
    2Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    3College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    4College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Received date: 2016-12-06

  Accepted date: 2017-05-04

  Online published: 2017-05-04

Abstract

Under normal conditions, the capacity of plants to generate negative air ions (NAIs) is very weak. However, stimulation of a pulsed electrical field can result in substantial improvement of the ability for NAI generation. We examined NAI generation in Stromanthe sanguinea, Calathea zebrina, and Hippeastrum rutilum in glass chambers under the natural state and under pulsed electrical field and light stimulation and analyzed the shape of stomata. We found variation in NAI generation by plants due to the different combined parameters of the pulsed electrical field. Each plant has its own optimal pulsed electrical field with a combination of parameters for efficient NAI generation: S. sanguinea with A3B3C3 (A3, U=1.5×104 V; B3, T=1.5 s; C3, τ =65 ms), C. zebrina with A3B4C1 (A3, U=1.5×104 V; B4, T=2.0 s; C1,τ =5 ms) and H. rutilum with A4B4C1 (A4, U=2.0×104 V; B4, T=2.0 s; C1, τ=5 ms). With the application of a pulsed electrical field to plants, the higher the voltage, the greater the capacity for NAI generation. With enhanced light intensity, the ability to generate NAI significantly increased with application of a pulsed electrical field. Without the pulsed electrical field, despite the slightly increased NAI concentration with increasing light intensity, NAI concentration did not differ (P>0.05). Finally, NAI generation was closely related to the characteristics of leaf stomata. Furthermore, a greater degree of stomatal opening and stomatal density was associated with stronger capacity to generate NAI.

Cite this article

Wu Renye, Sun Yuanfen, Zheng Jingui, Deng Chuanyuan, Ye Dapeng, Wang Qingshui . Relationship Between Negative Air Ion Generation by Plants and Stomatal Characteristics Under Stimulation of Pulsed Electrical Field[J]. Chinese Bulletin of Botany, 2017 , 52(6) : 744 -755 . DOI: 10.11983/CBB16242

References

[1] 鲍风宇, 秦永胜, 李荣桓, 周金星, 杨军 (2013). 北京市5种典型城市绿化植物的生态保健功能分析. 中国农学通报 29(22), 26-35.
[2] 陈雷, 孙冰, 谭广文, 李子华, 陈勇, 黄应锋, 廖绍波 (2015). 广州城市绿地植物群落空气负离子特征研究. 西北林学院学报 30, 227-232.
[3] 董莎莎, 胡梦婷, 姚玉婷, 刘鹤, 蒋文伟 (2013). 青山湖不同植物群落空气负离子效应评价. 中国园艺文摘 29(12), 65-66.
[4] 范亚民, 何平, 李建龙, 沈守云 (2005). 城市不同植被配置类型空气负离子效应评价. 生态学杂志 24, 883-886.
[5] 关蓓蓓, 郑思俊, 崔心红, 张帅, 何小丽, 朱义 (2016). 崇明岛不同生态用地空气负离子分布规律研究. 西北林学院学报 31, 280-285.
[6] 黄向华, 王健, 曾宏达, 陈光水, 钟羡芳 (2013). 城市空气负离子浓度时空分布及其影响因素综述. 应用生态学报 24, 1761-1768.
[7] 李安伯 (1983). 空气离子生物学效应研究的进展. 西安医学院学报 4, 103-108.
[8] 李安伯 (2001). 空气离子实验与临床研究新进展. 中华理疗杂志 24(2), 118-119.
[9] 李安伯, 张振军 (1996). 室内空气质量洁净与否的宏观评价法. 中国卫生工程学 5, 25-26.
[10] 李少宁, 王燕, 张玉平, 潘青华, 金万梅, 白金 (2010). 北京典型园林植物区空气负离子分布特征研究. 北京林业大学学报 32, 130-135.
[11] 刘新, 吴林豪, 张浩, 王祥荣 (2011). 城市绿地植物群落空气负离子浓度及影响要素研究. 复旦学报(自然科学版) 50, 206-212.
[12] 穆丹, 梁英辉 (2009). 佳木斯绿地空气负离子浓度及其与气象因子的关系. 应用生态学报 20, 2038-2041.
[13] 秦俊, 王丽勉, 高凯, 胡永红, 王玉勤, 由文辉 (2008). 植物群落对空气负离子浓度影响的研究. 华中农业大学学报 27, 303-308.
[14] 任洪昌, 闵庆文, 王维奇, 王纯, 张永勋 (2014). 福州鼓山茶园不同生境空气负离子浓度及其影响因子. 城市环境与城市生态 27, 1-6.
[15] 邵海荣, 贺庆棠 (2000). 森林与空气负离子. 世界林业研究 13(5), 19-23.
[16] 石彦军, 余树全, 郑庆林 (2010). 6种植物群落夏季空气负离子动态及其与气象因子的关系. 浙江林学院学报 27, 185-189.
[17] 孙继良, 么志红, 何宝华 (2010). 低强度运动匹配负离子对老年高血压患者的影响. 广州医药 41, 19-20.
[18] 王成, 郭二果, 郄光发 (2014). 北京西山典型城市森林内PM2.5动态变化规律. 生态学报 34, 5650-5658.
[19] 王薇 (2014). 空气负离子浓度分布特征及其与环境因子的关系. 生态环境学报 23, 979-984.
[20] 王晓磊, 王成 (2014). 城市森林调控空气颗粒物功能研究进展. 生态学报 34, 1910-1921.
[21] 王艳英, 邓传远, 郑金贵, 辛贵亮, 吴仁烨 (2014). 植物源负离子发生器室内应用的研究. 广州大学学报(自然科学版) 13, 29-37.
[22] 吴楚材, 郑群明, 钟林生 (2001). 森林游憩区空气负离子水平的研究. 林业科学 37(5), 75-81.
[23] 吴楚材, 钟林生 (1998). 马尾松纯林林分因子对空气负离子浓度影响的研究. 中南林学院学报 18, 70-73.
[24] 吴仁烨, 邓传远, 王彬, 黄德冰, 林丽, 黄建民, 郑金贵 (2011a). 具备释放负离子功能室内植物的种质资源研究. 中国农学通报 27(8), 91-97.
[25] 吴仁烨, 邓传远, 辛桂亮, 翁海勇, 杨志坚, 朱帖俊容, 郑金贵 (2014a). 植物释放负离子对室内空气质量影响分析. 安徽农业科学 42, 9491-9494.
[26] 吴仁烨, 邓传远, 杨志坚, 翁海勇, 朱帖俊容, 郑金贵 (2015). 脉冲电场作用对植物释放负离子的影响. 应用生态学报 26, 419-424.
[27] 吴仁烨, 黄德冰, 郭梨锦, 林丽, 黄建民, 邓传远 (2011b). 具备释放负离子功能室内植物的种质资源研究 II. 常态下室内植物负离子的释放. 亚热带农业研究 7, 1-6.
[28] 吴仁烨, 郑金贵, 程祖锌, 朱贵金, 阮晧然, 翁海勇 (2014b). 水稻植株释放负离子研究. 福建农林大学学报(自然科学版) 43, 512-517.
[29] 习岗, 杨运经 (2008). 电磁场对生物体系的非热效应及其作用机理. 大学物理 27(11), 50-52, 63.
[30] 杨运经, 习岗, 刘锴, 张晓辉 (2011). 应用负高压脉冲技术提高植物空气净化能力的探讨. 高电压技术 37, 190-197.
[31] 杨运经, 习岗, 张社奇 (2009). 脉冲电场介导的植物空气负离子发射的倍增效应及其意义. 大学物理 28(12), 39-42.
[32] 曾曙才, 苏志尧, 陈北光 (2007). 广州绿地空气负离子水平及其影响因子. 生态学杂志 26, 1049-1053.
[33] 张凯旋, 张建华 (2013). 上海环城林带保健功能评价及其机制. 生态学报 33, 4189-4198.
[34] 张万超, 郑金贵, 黄龙飞, 时顺锋, 吴仁烨, 邓传远 (2015). 常态下仙人掌科植物负离子释放量的比较及其与刺数量的关系. 福建农林大学学报(自然科学版) 44, 402-407.
[35] 张万超, 郑俊鸣, 丁旭玲, 彭东辉, 吴仁烨, 邓传远, 郑金贵 (2016). 3种仙人掌科植物负离子释放量与释放通道的相关性研究. 热带作物学报 37, 1298-1305.
[36] 张亚冰, 王秀云, 洪亚平 (2008). 植物叶表皮制片方法改进. 安徽农业科学 36, 12683, 12689.
[37] 钟林生, 吴楚材, 肖笃宁 (1998). 森林旅游资源评价中的空气负离子研究. 生态学杂志 17, 56-60.
[38] Griffin JE, Kornblueh IH (1962). Ionization of the air.Int J Biometeorol 6, 29-32.
[39] Kondrashove MN, Grigorenko EV, Tikhonov AN, Sirota
[40] TV, Temnov AV, Stavrovskaja IG, Kosyakova NI, Lange NV, Tikhonov VP (2000). The primary physico- chemical mechanism for the beneficial biological/medical effects of negative air ions.IEEE Trans Plasma Sci 28, 230-237.
[41] Kosenko EA, Kaminsky YG, Stavrovskaya IG, Sirota TV, Kondrashova MN (1997). The stimulatory effect of negative air ions and hydrogen peroxide on the activity of superoxide dismutase.FEBS Lett 410, 309-312.
[42] Krueger AP (1962). Air ions and physiological function.J Gen Physiol 45, 233-241.
[43] Krueger AP (1972). Are air ions biologically significant? A review of a controversial subject.Int J Biometeorol 16, 313-322.
[44] Krueger AP (1985). The biological effects of air ions.Int J Biometeorol 29, 205-206.
[45] Krueger AP, Reed EJ (1976). Biological impact of small air ions.Science 193, 1209-1213.
[46] Liang H, Chen XS, Yin JG, Da LJ (2014). The spatial- temporal pattern and influencing factors of negative air ions in urban forests, Shanghai, China.J For Res 25, 847-856.
[47] Nakane H, Asami O, Yamada Y, Ohira H (2002). Effect of negative air ions on computer operation, anxiety and Sali- vary chromogranin A-like immunoreactivity.Int J Psycho- physiol 46, 85-89.
[48] Tikhonov VP, Tsvetkov VD, Litvinova EG, Sirota TV, Kondrashova MN (2002). Generation of negative air ions by wheat seedlings in a high voltage electrization of soil.Biofizika 47, 130-134.
[49] Tikhonov VP, Tsvetkov VD, Litvinova EG, Sirota TV, Kondrashova MN (2004). Generation of negative air ions by plants upon pulsed electrical stimulation applied to soil.Russ J Plant Physiol 51, 414-419.
[50] Wakamura T, Sato M, Sato A, Dohi T, Ozaki K, Asou N, Hagata S, Tokura H (2004). A preliminary study on influence of negative air ions generated from pajamas on core body temperature and salivary IgA during night sleep.Int J Occup Med Environ Health 17, 295-298.
[51] Wang J, Li SH (2009). Changes in negative air ions concentration under different light intensities and development of a model to relate light intensity to directional ch- ange.J Environ Manage 90, 2746-2754.
[52] Wu CF, Lai CH, Chu HJ, Lin WJ (2011). Evaluating and mapping of spatial air ion quality patterns in a residential garden using a geostatistic method.Int J Environ Res Pub- lic Health 8, 2304-2319.
Outlines

/

674-3466/bottom_en.htm"-->