[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
SPECIAL TOPICS

Advances in Coumarins Biosynthesis and their Functions in Iron Absorption in Plants

  • ZHOU Jing ,
  • GAO Fei
Expand
  • 1College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; 2 College of Agronomy, Hunan Agricultural University, Changsha 410128,  China

Received date: 2024-07-17

  Revised date: 2024-11-07

  Online published: 2024-12-27

Abstract

Coumarins are a class of phenolic compounds with benzopyrone as the parent ring structure, which widely exist in higher plants. In recent years, studies have shown that root-secreted coumarins could promote iron absorption in plants. Here, the recent progress of the discovery and identification of genes related to the biosynthesis and regulation of plant root-secreted coumarins were reviewed, and the molecular mechanism of the biosynthesis, storage, secretion, and regulation of root-secreted coumarins was further elaborated. The mechanism of how coumarins could promote plant iron uptake also have been discussed. Finally, this paper gives a preliminary outlook on the future research directions to gain knowledge of these mechanisms, which could offer novel opportunities to generate iron deficiency tolerant crops and iron-biofortified crops

Cite this article

ZHOU Jing , GAO Fei . Advances in Coumarins Biosynthesis and their Functions in Iron Absorption in Plants[J]. Chinese Bulletin of Botany, 0 : 1 -0 . DOI: 10.11983/CBB24106

[an error occurred while processing this directive]

References

Ahn Young Ock, Shimizu Bun-ichi, Sakata Kanzo, Gantulga Dashzeveg, Zhou Zhanghe, Bevan David R, Esen Asim (2010). Scopolin-hydrolyzing β-glucosidases in roots of Arabidopsis. Plant and Cell Physiology, 51(1), 132-143.
Bauer Petra, Ling Hong-Qing, Guerinot Mary Lou (2007). FIT, the FER-like iron deficiency induced transcription factor in Arabidopsis. Plant physiology and biochemistry, 45(5), 260-261.
Briat Jean-Fran?ois, Dubos Christian, Gaymard Frédéric (2015). Iron nutrition, biomass production, and plant product quality. Trends in Plant Science, 20(1), 33-40.
Brown JC, Ambler JE (1973). “Reductants” Released by Roots of Fe‐Deficient Soybeans 1. Agronomy Journal, 65(2), 311-314.
Brumbarova Tzvetina, Bauer Petra, Ivanov Rumen (2015). Molecular mechanisms governing Arabidopsis iron uptake. Trends in Plant Science, 20(2), 124-133.
Carvalhais Lilia C, Dennis Paul G, Fedoseyenko Dmitri, Hajirezaei Mohammad‐Reza, Borriss Rainer, von Wirén Nicolaus (2011). Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. Journal of Plant Nutrition and Soil Science, 174(1), 3-11.
Chezem William R, Memon Altamash, Li Fu-Shuang, Weng Jing-Ke, Clay Nicole K (2017). SG2-type R2R3-MYB transcription factor MYB15 controls defense-induced lignification and basal immunity in Arabidopsis. The Plant Cell, 29(8), 1907-1926.
Chutia Ranju, Abel Steffen, Ziegler J?rg (2019). Iron and phosphate deficiency regulators concertedly control coumarin profiles in Arabidopsis thaliana roots during iron, phosphate, and combined deficiencies. Frontiers in Plant Science, 10(113.
Colangelo Elizabeth P, Guerinot Mary Lou (2004). The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. The Plant Cell, 16(12), 3400-3412.
de Brito Francisco Rita, Martinoia Enrico (2018). The vacuolar transportome of plant specialized metabolites. Plant and Cell Physiology, 59(7), 1326-1336.
DeLoose Megan, Cho Huikyong, Bouain Nadia, Choi Ilyeong, Prom‐U‐Thai Chanakan, Shahzad Zaigham, Zheng Luqing, Rouached Hatem (2024). PDR9 allelic variation and MYB63 modulate nutrient‐dependent coumarin homeostasis in Arabidopsis. The Plant Journal.
Dong Nai‐Qian, Lin Hong‐Xuan (2021). Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. Journal of integrative plant biology, 63(1), 180-209.
Ducos Eric, Fraysse ? Staffan, Boutry Marc (2005). NtPDR3, an iron-deficiency inducible ABC transporter in Nicotiana tabacum. FEBS letters, 579(30), 6791-6795.
Fourcroy Pierre, Sisó‐Terraza Patricia, Sudre Damien, Savirón María, Reyt Guilhem, Gaymard Frédéric, Abadía Anunciación, Abadia Javier, álvarez‐Fernández Ana, Briat Jean‐Fran?ois (2014). Involvement of the ABCG 37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytologist, 201(1), 155-167.
Fourcroy Pierre, Tissot Nicolas, Gaymard Frédéric, Briat Jean-Francois, Dubos Christian (2016). Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe2+ transport system. Molecular Plant, 9(3), 485-488.
Gao Fei, Dubos Christian (2020). Transcriptional integration of plant responses to iron availability. Journal of Experimental Botany, 72(6), 2056-2070.
Gao Fei, Robe Kevin, Bettembourg Mathilde, Navarro Nathalia, Rofidal Valerie, Santoni Véronique, Gaymard Frédéric, Vignols Florence, Roschzttardtz Hannetz, Izquierdo Esther (2020a). The transcription factor bHLH121 interacts with bHLH105 (ILR3) and its closest homologs to regulate iron homeostasis in Arabidopsis. The Plant Cell, 32(2), 508-524.
Gao Fei, Robe Kevin, Bettembourg Mathilde, Navarro Nathalia, Rofidal Valérie, Santoni Véronique, Gaymard Frédéric, Vignols Florence, Roschzttardtz Hannetz, Izquierdo Esther, Dubos Christian (2019a). The Transcription Factor bHLH121 Interacts with bHLH105 (ILR3) and Its Closest Homologs to Regulate Iron Homeostasis in Arabidopsis. The Plant Cell, 32(2), 508-524.
Gao Fei, Robe Kevin, Dubos Christian (2020b). Further insights into the role of bHLH121 in the regulation of iron homeostasis in Arabidopsis thaliana. Plant Signaling & Behavior, 15(10), 1795582.
Gao Fei, Robe Kevin, Gaymard Frederic, Izquierdo Esther, Dubos Christian (2019b). The Transcriptional Control of Iron Homeostasis in Plants: A Tale of bHLH Transcription Factors? Frontiers in Plant Science, 10(6).
Guerinot Mary Lou, Yi Ying (1994). Iron: nutritious, noxious, and not readily available. Plant physiology, 104(3), 815.
H?nsch Robert, Mendel Ralf R (2009). Physiological functions of mineral micronutrients (cu, Zn, Mn, Fe, Ni, Mo, B, cl). Current opinion in plant biology, 12(3), 259-266.
Hether NH, Olsen RA, Jackson LL (1984). Chemical identification of iron reductants exuded by plant roots. Journal of Plant Nutrition, 7(1-5), 667-676.
Jin Chong Wei, You Guang Yi, He Yun Feng, Tang Caixian, Wu Ping, Zheng Shao Jian (2007). Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant physiology, 144(1), 278-285.
Kai Kosuke, Mizutani Masaharu, Kawamura Naohiro, Yamamoto Ryotaro, Tamai Michiko, Yamaguchi Hikaru, Sakata Kanzo, Shimizu Bun‐ichi (2008). Scopoletin is biosynthesized via ortho‐hydroxylation of feruloyl CoA by a 2‐oxoglutarate‐dependent dioxygenase in Arabidopsis thaliana. The Plant Journal, 55(6), 989-999.
Knoblauch Michael, Vendrell Marc, De Leau Erica, Paterlini Andrea, Knox Kirsten, Ross-Elliot Tim, Reinders Anke, Brockman Stephen A, Ward John, Oparka Karl (2015). Multispectral phloem-mobile probes: properties and applications. Plant physiology, 167(4), 1211-1220.
Kobayashi Takanori, Nishizawa Naoko K (2012). Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol, 63(1), 131-152.
Lan Ping, Li Wenfeng, Wen Tuan-Nan, Shiau Jeng-Yuan, Wu Yu-Ching, Lin Wendar, Schmidt Wolfgang (2011). iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis. Plant Physiology, 155(2), 821-834.
Le? ková Alexandra, Giehl Ricardo FH, Hartmann Anja, Farga? ová Agáta, von Wirén Nicolaus (2017). Heavy metals induce iron deficiency responses at different hierarchic and regulatory levels. Plant physiology, 174(3), 1648-1668.
Lefèvre Fran?ois, Fourmeau Justine, Pottier Mathieu, Baijot Amandine, Cornet Thomas, Abadía Javier, álvarez-Fernández Ana, Boutry Marc (2018). The Nicotiana tabacum ABC transporter NtPDR3 secretes O-methylated coumarins in response to iron deficiency. Journal of Experimental Botany, 69(18), 4419-4431.
Ma Jian Feng, Taketa Shin, Chang Yi-Chieh, Iwashita Takashi, Matsumoto Hideaki, Takeda Kazuyoshi, Nomoto Kyosuke (1999). Genes controlling hydroxylations of phytosiderophores are located on different chromosomes in barley (Hordeum vulgare L.). Planta, 207(4), 590-596.
Murgia Irene, Tarantino Delia, Soave Carlo, Morandini Piero (2011). Arabidopsis CYP82C4 expression is dependent on Fe availability and circadian rhythm, and correlates with genes involved in the early Fe deficiency response. Journal of plant physiology, 168(9), 894-902.
Paffrath Vanessa, Tandron Moya Yudelsy A, Weber Günther, von Wirén Nicolaus, Giehl Ricardo F H (2023). A major role of coumarin-dependent ferric iron reduction in strategy I-type iron acquisition in Arabidopsis. The Plant Cell, 36(3), 642-664.
Pan I-Chun, Tsai Huei-Hsuan, Cheng Ya-Tan, Wen Tuan-Nan, Buckhout Thomas J, Schmidt Wolfgang (2015). Post-transcriptional coordination of the Arabidopsis iron deficiency response is partially dependent on the E3 ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2). Molecular & Cellular Proteomics, 14(10), 2733-2752.
Rajniak Jakub, Giehl Ricardo FH, Chang Evelyn, Murgia Irene, von Wirén Nicolaus, Sattely Elizabeth S (2018). Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nature chemical biology, 14(5), 442-450.
Riaz Nabila, Guerinot Mary Lou (2021). All together now: regulation of the iron deficiency response. Journal of experimental botany, 72(6), 2045-2055.
Robe Kevin, Conejero Geneviève, Gao Fei, Lefebvre-Legendre Linnka, Sylvestre-Gonon Elodie, Rofidal Valérie, Hem Sonia, Rouhier Nicolas, Barberon Marie, Hecker Arnaud, Gaymard Frédéric, Izquierdo Esther, Dubos Christian (2021a). Coumarin accumulation and trafficking in Arabidopsis thaliana: a complex and dynamic process. New Phytologist, 229(4), 2062-2079.
Robe Kevin, Conejero Geneviève, Gao Fei, Lefebvre‐Legendre Linnka, Sylvestre‐Gonon Elodie, Rofidal Valérie, Hem Sonia, Rouhier Nicolas, Barberon Marie, Hecker Arnaud (2021b). Coumarin accumulation and trafficking in Arabidopsis thaliana: a complex and dynamic process. New Phytologist, 229(4), 2062-2079.
Robe Kevin, Izquierdo Esther, Vignols Florence, Rouached Hatem, Dubos Christian (2021c). The coumarins: secondary metabolites playing a primary role in plant nutrition and health. Trends in Plant Science, 26(3), 248-259.
Rodríguez-Celma Jorge, Lin Wen-Dar, Fu Guin-Mau, Abadia Javier, López-Millán Ana-Flor, Schmidt Wolfgang (2013). Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant physiology, 162(3), 1473-1485.
Rodríguez-Celma Jorge, Tsai Yi-Hsiu, Wen Tuan-Nan, Wu Yu-Ching, Curie Catherine, Schmidt Wolfgang (2016). Systems-wide analysis of manganese deficiency-induced changes in gene activity of Arabidopsis roots. Scientific reports, 6(1), 1-16.
Rodríguez-Celma Jorge, Vázquez-Reina Saúl, Orduna Jesús, Abadía Anunciación, Abadía Javier, álvarez-Fernández Ana, López-Millán Ana-Flor (2011). Characterization of flavins in roots of Fe-deficient strategy I plants, with a focus on Medicago truncatula. Plant and Cell Physiology, 52(12), 2173-2189.
R?mheld V, Marschner H (1981). Iron deficiency stress induced morphological and physiological changes in root tips of sunflower. Physiologia Plantarum, 53(3), 354-360.
Ro?mheld Volker, Marschner Horst (1983). Mechanism of iron uptake by peanut plants: I. FeIII reduction, chelate splitting, and release of phenolics. Plant physiology, 71(4), 949-954.
Ro?mheld Volker, Marschner Horst (1986). Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant physiology, 80(1), 175-180.
Schmid Nicole B, Giehl Ricardo FH, D?ll Stefanie, Mock Hans-Peter, Strehmel Nadine, Scheel Dierk, Kong Xiaole, Hider Robert C, von Wirén Nicolaus (2014). Feruloyl-CoA 6′-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant physiology, 164(1), 160-172.
Schmidt Wolfgang (1999). Mechanisms and regulation of reduction-based iron uptake in plants. The New Phytologist, 141(1), 1-26.
Schmidt Wolfgang (2003). Iron solutions: acquisition strategies and signaling pathways in plants. Trends in Plant Science, 8(4), 188-193.
Schwarz Birte, Bauer Petra (2020a). FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and-independent gene signatures. Journal of Experimental Botany, 71(5), 1694-1705.
Schwarz Birte, Bauer Petra (2020b). FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and -independent gene signatures. Journal of experimental botany, 71(5), 1694-1705.
Siwinska Joanna, Siatkowska Kinga, Olry Alexandre, Grosjean Jeremy, Hehn Alain, Bourgaud Frederic, Meharg Andrew A, Carey Manus, Lojkowska Ewa, Ihnatowicz Anna (2018). Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. Journal of experimental botany, 69(7), 1735-1748.
Stringlis Ioannis A, Yu Ke, Feussner Kirstin, de Jonge Ronnie, Van Bentum Sietske, Van Verk Marcel C, Berendsen Roeland L, Bakker Peter AHM, Feussner Ivo, Pieterse Corné MJ (2018). MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proceedings of the National Academy of Sciences, 115(22), E5213-E5222.
Takemoto Tsunematsu, Nomoto Kyosuke, Fushiya Shinji, Ouchi Reiko, Kusano Genjiro, Hikino Hiroshi, Takagi Sei-Ichi, Matsuura Yoshiki, Kakudo Masao (1978). Structure of mugineic acid, a new amino acid possessing an iron-chelating activity from roots washings of water-cultured Hordeum vulgare L. Proceedings of the Japan Academy, Series B, 54(8), 469-473.
Tsai H. H., Schmidt W. (2017). Mobilization of Iron by Plant-Borne Coumarins. Trends Plant Sci, 22(6), 538-548.
Tsai Huei-Hsuan, Rodríguez-Celma Jorge, Lan Ping, Wu Yu-Ching, Vélez-Bermúdez Isabel Cristina, Schmidt Wolfgang (2018). Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization. Plant Physiology, 177(1), 194-207.
Vanholme Ruben, Sundin Lisa, Seetso Keletso Carol, Kim Hoon, Liu Xinyu, Li Jin, De Meester Barbara, Hoengenaert Lennart, Goeminne Geert, Morreel Kris (2019). COSY catalyses trans–cis isomerization and lactonization in the biosynthesis of coumarins. Nature Plants, 5(10), 1066-1075.
Vogt Thomas (2010). Phenylpropanoid biosynthesis. Molecular plant, 3(1), 2-20.
Waters Brian M, Amundsen Keenan, Graef George (2018). Gene expression profiling of iron deficiency chlorosis sensitive and tolerant soybean indicates key roles for phenylpropanoids under alkalinity stress. Frontiers in plant science, 9(10.
Welkie George W (2000). Taxonomic distribution of dicotyledonous species capable of root excretion of riboflavin under iron deficiency. Journal of Plant Nutrition, 23(11-12), 1819-1831.
Werner Christa, Matile Philippe (1985). Accumulation of coumarylglucosides in vacuoles of barley mesophyll protoplasts. Journal of plant physiology, 118(3), 237-249.
Who Joint, Consultation FAO Expert (2003). Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser, 916(i-viii), 1-149.
Xu Wenjia, Dubos Christian, Lepiniec Lo?c (2015). Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in Plant Science, 20(3), 176-185.
Yang Thomas JW, Lin Wen-Dar, Schmidt Wolfgang (2010). Transcriptional profiling of the Arabidopsis iron deficiency response reveals conserved transition metal homeostasis networks. Plant physiology, 152(4), 2130-2141.
Zamioudis Christos, Hanson Johannes, Pieterse Corné MJ (2014). β‐Glucosidase BGLU 42 is a MYB 72‐dependent key regulator of rhizobacteria‐induced systemic resistance and modulates iron deficiency responses in A rabidopsis roots. New Phytologist, 204(2), 368-379.
Zhang Xuebin, Gou Mingyue, Guo Chunrong, Yang Huijun, Liu Chang-Jun (2015). Down-regulation of Kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly) phenols and tolerance to ultraviolet radiation. Plant Physiology, 167(2), 337-350.
Zhang Xuebin, Gou Mingyue, Liu Chang-Jun (2013). Arabidopsis Kelch repeat F-box proteins regulate phenylpropanoid biosynthesis via controlling the turnover of phenylalanine ammonia-lyase. The Plant Cell, 25(12), 4994-5010.
Ziegler J?rg, Schmidt Stephan, Chutia Ranju, Müller Jens, B?ttcher Christoph, Strehmel Nadine, Scheel Dierk, Abel Steffen (2016). Non-targeted profiling of semi-polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate limitation. Journal of experimental botany, 67(5), 1421-1432.
Ziegler J?rg, Schmidt Stephan, Strehmel Nadine, Scheel Dierk, Abel Steffen (2017). Arabidopsis transporter ABCG37/PDR9 contributes primarily highly oxygenated coumarins to root exudation. Scientific Reports, 7(1), 1-11.
李利敏, 吴良欢, 马国瑞 (2010). 植物吸收铁机理及其相关基因研究进展. 土壤通报4), 994-999.
申红芸, 熊宏春, 郭笑彤, 左元梅 (2011). 植物吸收和转运铁的分子生理机制研究进展. 植物营养与肥料学报, 17(6), 1522-1530.
韦建玉, 金亚波, 杨启港, 王军 (2007). 植物铁营养研究进展 Ⅱ: 铁运输与铁有关的分子生物学基础. 安徽农业科学, 35(33), 10589-10593.
吴慧兰, 王宁, 凌宏清 (2007). 植物铁吸收, 转运和调控的分子机制研究进展. 植物学报, 24(06), 779.
邢燕菊, 韩金龙, 徐立华, 阴卫军, 丁一, 王同燕, 许方佐, 马驰 (2010). 禾本科专一性根系分泌物——麦根酸类物质研究进展. 山东农业科学10), 62-65.
赵安娜, 罗光明, 罗扬婧, 宋丹丹, 夏鸿东, 任洪曼, 张攀 (2021). bHLH 转录因子在植物缺铁调控网络中的作用机制. 农业生物技术学报, 29(12), 2427-2435.

Outlines

/

[an error occurred while processing this directive]